首页> 外文期刊>Optical Switching and Networking >Experimental demonstration of an ultra-low latency control plane for optical packet switching in data center networks
【24h】

Experimental demonstration of an ultra-low latency control plane for optical packet switching in data center networks

机译:用于数据中心网络中光分组交换的超低延迟控制平面的实验演示

获取原文
获取原文并翻译 | 示例
           

摘要

Optical interconnection networks have the potential to reduce latency and power consumption while increasing the bisection bandwidth of data center networks compared to electrical network architectures. Optical circuit-switched networking has been proposed but it is reconfigurable in milliseconds. Although switches operating on nanosecond timescales have been demonstrated, centrally scheduling such switching architectures is considered to be of high complexity, incurring significant delay penalties on the total switching latency. In this paper we present a high-speed control plane design based on a central switch scheduler for nanosecond optical switching which significantly reduces the end-to-end latency in the network compared to using the best electronic switches. We discuss the implementation of our control plane on field-programmable gate array (FPGA) boards and quantify its delay components. We focus on the output-port allocation circuit design which limits the scheduling delay and the end-to-end latency. Using our FPGA-implemented control plane, for a 32 x 32 switch, we experimentally demonstrate rack-scale optical packet switching with a minimum end-to-end head-to-tail latency of 71.0 ns, outperforming current state-of-the-art electronic switches. The effect of asynchronous control plane operation on the switch performance is evaluated experimentally. Finally, a new parallel allocation circuit design is presented decreasing the scheduling delay by 42.7% and the minimum end-to-end latency to 54.6 ns. More importantly, it enables scaling to a switch double the size (64 x 64) with a minimum end-to-end latency less than 71.0 ns. In a developed cycle-accurate network emulator we demonstrate nanosecond switching up to 60% of port capacity and average end-to-end latency less than 10 mu s at full capacity while maintaining zero packet loss across all traffic loads.
机译:与电气网络体系结构相比,光互连网络有潜力减少延迟和功耗,同时增加数据中心网络的对等带宽。已经提出了光电路交换网络,但是它可以在几毫秒内重新配置。尽管已经证明了以纳秒为时标运行的交换机,但是集中调度这种交换体系结构被认为具有很高的复杂性,从而对总的交换等待时间造成了明显的延迟损失。在本文中,我们提出了一种基于中央交换机调度程序的高速控制平面设计,用于纳秒级光交换,与使用最佳的电子交换机相比,它可以显着减少网络中的端到端延迟。我们讨论了现场可编程门阵列(FPGA)板上控制平面的实现并量化其延迟分量。我们专注于输出端口分配电路设计,该设计限制了调度延迟和端到端延迟。使用我们的FPGA实现的控制平面,对于32 x 32的交换机,我们实验性地演示了机架级光分组交换,其最小端到端头到尾延迟为71.0 ns,优于当前的状态。艺术电子开关。实验评估了异步控制平面操作对开关性能的影响。最后,提出了一种新的并行分配电路设计,将调度延迟减少了42.7%,最小端到端等待时间降至54.6 ns。更重要的是,它能够将交换机缩放到两倍大小(64 x 64),而最小的端到端延迟小于71.0 ns。在开发的具有周期精确性的网络仿真器中,我们演示了纳秒级交换,可在高达60%的端口容量的情况下实现全容量,并且平均端到端延迟小于10 s s,同时在所有流量负载下保持零数据包丢失。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号