首页> 外文学位 >Ultra-low latency optical packet switching networks.
【24h】

Ultra-low latency optical packet switching networks.

机译:超低延迟的光分组交换网络。

获取原文
获取原文并翻译 | 示例

摘要

A novel paradigm for high-capacity, low-latency optical packet switching (OPS) interconnection network architectures is enunciated, appropriate for applications in high-performance computing, storage area networks, and telecommunications core routers. This design capitalizes on the immense bandwidth provided by optical signal encoding and transmission over contemporary fiberoptic components, and avoids common pitfalls and shortcomings of photonic technologies, especially the complexity of all-optical logic devices and the absence of robust optical buffers and registers. The structure of a single-packet 2-by-2 photonic switching node which is based on semiconductor optical amplifiers (SOAs) is introduced; packets traverse the node entirely in the optical domain while optical header information is extracted and digital electronic circuitry cooperatively computes the routing decision to be executed by the SOAs. The switching node exhibits almost perfect optical transparency to multiple-wavelength optical packets over nearly the whole ITU C-band. The packet structure is itself unique, containing designated header wavelengths with simple one-bit encoding, in addition to multiple wavelengths modulated at extremely high data rates for packet payload encoding. Empirical measurements quantify the switching node's minimal impact on the optically encoded signals, including a receiver power penalty of just 0.2 dB and a noise figure of 7.0 dB. A first prototype of the Data Vortex architecture provides 12 input ports and 12 output ports and comprises 36 switching nodes. Because the distributed multiple-stage network topology is based on a banyan routing structure while incorporating a deflection routing scheme, it is ideal for implementation with optical components. The architecture presented here differs markedly from conventional designs in that it capitalizes fully on the high-bandwidth nature of multiple-wavelength optical transmission in a scheme that also leverages the benefits of high-speed electronics, and thus requires no sophisticated optical processing nor buffering. The implemented system is capable of routing packets with 160 Gbps of bandwidth over 16 discrete payload wavelengths in approximately 100 ns while maintaining practically error-free signal integrity over an optical power dynamic range of more than 6 dB. Further experimental measurements investigate the OPS interconnection network's flexibility and robustness in terms of optical signal quality and network timing. Numerous demonstrations and subsequent empirical investigations support the scalability of the implemented architecture and serve to substantiate the merits of the proposed OPS network architectural paradigm.
机译:阐述了一种适用于高性能计算,存储区域网络和电信核心路由器的大容量,低延迟光分组交换(OPS)互连网络体系结构的新颖范例。这种设计利用了在当代光纤组件上进行光信号编码和传输所提供的巨大带宽,避免了光子技术的常见缺陷和缺点,尤其是全光逻辑器件的复杂性以及缺少健壮的光缓冲器和寄存器。介绍了基于半导体光放大器(SOA)的单分组2×2光子交换节点的结构;当提取光头信息并且数字电子电路协同计算要由SOA执行的路由决策时,数据包将在整个光域中遍历该节点。交换节点在几乎整个ITU C频段上对多波长光分组都表现出近乎完美的光学透明性。数据包结构本身是唯一的,除了通过以极高数据速率调制的多个波长进行数据包有效载荷编码外,还包含具有简单一位编码的指定报头波长。经验性测量量化了开关节点对光编码信号的最小影响,包括仅0.2 dB的接收机功率损失和7.0 dB的噪声系数。 Data Vortex体系结构的第一个原型提供12个输入端口和12个输出端口,并包含36个交换节点。由于分布式多级网络拓扑是基于榕树路由结构的,同时包含了偏转路由方案,因此非常适合使用光学组件来实现。此处介绍的体系结构与常规设计显着不同,因为它充分利用了多波长光传输的高带宽特性,并且该方案还利用了高速电子技术的优势,因此不需要复杂的光学处理或缓冲。所实施的系统能够在大约100 ns内的16个离散有效载荷波长上路由具有160 Gbps带宽的数据包,同时在超过6 dB的光功率动态范围内保持几乎无错误的信号完整性。进一步的实验测量研究了OPS互连网络在光信号质量和网络时序方面的灵活性和鲁棒性。大量的演示和后续的经验研究支持所实现的体系结构的可伸缩性,并有助于证实所提出的OPS网络体系结构范式的优点。

著录项

  • 作者

    Small, Benjamin A.;

  • 作者单位

    Columbia University.;

  • 授予单位 Columbia University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 103 p.
  • 总页数 103
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

  • 入库时间 2022-08-17 11:40:24

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号