...
首页> 外文期刊>Optical fiber technology >Lasing characteristics of highly bend compensated large mode area ytterbium doped modified hybrid multi trench fiber
【24h】

Lasing characteristics of highly bend compensated large mode area ytterbium doped modified hybrid multi trench fiber

机译:高度弯曲补偿大型地区YTTerbium掺杂改性混合多沟纤维的激光特性

获取原文
获取原文并翻译 | 示例

摘要

In this article, lasing characteristics of a newly designed ytterbium-doped modified hybrid multi trench fiber (YDMHMTF) has been numerically investigated for strongly pumped conditions. The designed YDMHMTF is maintained single-mode condition with an effective mode area of 1300 mu m(2) at the wavelength of 1064 nm for the compact bending radius of 7.5 cm. The radius of doped region is varied up to a maximum core size of similar to 19 mu m through numerical simulations to achieve maximum conversion efficiency for the straight and bending cases. The effective signal overlap factor is ensured by introducing a high-index arc in the inner trench of fiber along with a maximum doped core region. A 1.5 m length of highly bend LMA YDMHMTF shows slope efficiency of 74% and conversion efficiency of 75% when pumped with a laser source of 975 nm. Further, the high slope efficiency of 81% and conversion efficiency of 80% are achieved with aid of a 2 m length YDMHMTF for the straight and practical bending conditions. Therefore, the proposed YDMHMTF can be utilized to develop an efficient compact laser system suitable for industrial lasing applications. Moreover, the fabrication feasibility of our proposed YDMHMTF becomes easier than the photonic crystal fiber and Bragg fiber based designs.
机译:在本文中,针对强泵送条件进行了数值研究了新设计的yTterbium掺杂改性混合多沟槽纤维(YDMHMTF)的激光特性。设计的YDMHMTF在具有7.5厘米的紧凑型弯曲半径的波长为1064nm的波长下保持单模条件,其有效模式区域为1300μm(2)。掺杂区域的半径变化到通过数值模拟相似的最大核心尺寸,以实现直线和弯曲壳体的最大转换效率。通过在光纤内部沟槽中引入具有最大掺杂芯区域的高折射率弧来确保有效信号重叠因子。高度弯曲LMA YDMHMTF的1.5米长表示74%的斜率效率为74%,随着975nm的激光源泵送时,转换效率为75%。此外,借助于2米长的YdmHMTF为直线和实际弯曲条件,实现了81%的高斜率效率81%和80%的转化效率。因此,所提出的YDMHMTF可用于开发一种适用于工业激光应用的有效紧凑的激光系统。此外,我们所提出的YDMHMTF的制造可行性比光子晶体纤维和布拉格纤维的设计更容易。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号