首页> 外文期刊>Operating systems review >Bringing Engineering Rigor to Deep Learning
【24h】

Bringing Engineering Rigor to Deep Learning

机译:使工程学步入深度学习

获取原文
获取原文并翻译 | 示例
           

摘要

Deep learning (DL) systems are increasingly deployed in safety- and security-critical domains including autonomous driving, robotics, and malware detection, where the correctness and predictability of a system on corner-case inputs are of great importance. Unfortunately, the common practice to validating a deep neural network (DNN) - measuring overall accuracy on a randomly selected test set - is not designed to surface corner-case errors. As recent work shows, even DNNs with state-of-the-art accuracy are easily fooled by human-imperceptible, adversarial perturbations to the inputs. Questions such as how to test corner-case behaviors more thoroughly and whether all adversarial samples have been found remain unanswered. In the last few years, we have been working on bringing more engineering rigor into deep learning. Towards this goal, we have built five systems to test DNNs more thoroughly and verify the absence of adversarial samples for given datasets. These systems check a broad spectrum of properties (e.g., rotating an image should never change its classification) and find thousands of error-inducing samples for popular DNNs in critical domains (e.g., ImageNet, autonomous driving, and malware detection). Our DNN verifiers are also orders of magnitude (e.g., 5,000x) faster than similar tools. This article overviews our systems and discusses three open research challenges to hopefully inspire more future research towards testing and verifying DNNs.
机译:深度学习(DL)系统越来越多地部署在对安全性和安全性至关重要的领域中,包括自动驾驶,机器人和恶意软件检测,在这些领域中,针对极端情况输入的系统的正确性和可预测性至关重要。不幸的是,验证深度神经网络(DNN)的常规做法(在随机选择的测试集上测量总体准确性)并非旨在解决极端情况下的错误。正如最近的工作所显示的那样,即使是具有最先进准确性的DNN,也容易被人类无法感知的,对输入的对抗性干扰所愚弄。诸如如何更彻底地测试极端案例行为以及是否已找到所有对抗性样本之类的问题仍未得到解答。在过去的几年中,我们一直致力于将更多的工程严谨性带入深度学习。为了实现这一目标,我们建立了五个系统来更彻底地测试DNN,并验证给定数据集是否存在对抗性样本。这些系统检查了广泛的属性(例如,旋转图像不应更改其分类),并在关键域(例如ImageNet,自动驾驶和恶意软件检测)中找到数千种常见DNN的错误诱导样本。我们的DNN验证程序也比类似工具快几个数量级(例如5,000倍)。本文概述了我们的系统,并讨论了三个开放的研究挑战,以期激发更多的未来研究以测试和验证DNN。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号