...
首页> 外文期刊>Ocean Engineering >Onboard system of hybrid underwater robotic vehicles: Integrated software architecture and control algorithm
【24h】

Onboard system of hybrid underwater robotic vehicles: Integrated software architecture and control algorithm

机译:混合水下机器人车辆的车载系统:集成软件架构和控制算法

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In this paper, a hybrid underwater robotic vehicle (HURV), which combines the advantages of autonomous underwater vehicle and remotely operated vehicle, is introduced. The vehicle system consists of an onboard system with a set of embedded PC/104 computers and a surface monitoring station based on the client-server supervisory control and data acquisition (SCADA) system. Correspondingly, a two-layer software architecture composed of a monitoring layer and a task layer is presented, and they are inserted into the surface and onboard systems, respectively. The task layer includes four kinds of tasks - perception task, communication task, motion control task and fault treatment task. Subsequently, the design and implementation for multiple tasks running in the task layer are described in detail. Furthermore, under the above software architecture, a model-free fuzzy proportional-integral-derivative (FAD) controller is applied to heading control task at different speed profiles, in consideration of the simplified implementation on the PC/104 computer. Numerical simulation results quantitatively illustrate the designed FPID controller performs better than the classic PID controller, especially in the rise time, settling time, and overshot. Finally, tank experiments are performed to test the performance of the entire onboard system of the developed HURV with the integrated software architecture and FPID control algorithm.
机译:本文介绍了一种混合水下机器人机器人(HURV),它结合了自主水下机器人和遥控车辆的优点。车辆系统包括一个车载系统,该系统具有一组嵌入式PC / 104计算机和一个基于客户-服务器监督控制和数据采集(SCADA)系统的地面监测站。相应地,提出了一个由监视层和任务层组成的两层软件体系结构,并将它们分别插入地面和机载系统。任务层包括四种任务:感知任务,通信任务,运动控制任务和故障处理任务。随后,将详细描述任务层中运行的多个任务的设计和实现。此外,在上述软件体系结构下,考虑到在PC / 104计算机上的简化实现,将无模型的模糊比例积分微分(FAD)控制器应用于不同速度曲线下的航向控制任务。数值仿真结果定量地说明了设计的FPID控制器的性能优于传统的PID控制器,尤其是在上升时间,稳定时间和超调方面。最后,进行坦克实验以测试带有集成软件架构和FPID控制算法的已开发HURV整个船上系统的性能。

著录项

  • 来源
    《Ocean Engineering》 |2019年第1期|106121.1-106121.12|共12页
  • 作者单位

    Shanghai Jiao Tong Univ Sch Oceanog Shanghai 200030 Peoples R China;

    Huazhong Univ Sci & Technol Sch Naval Architecture & Ocean Engn Wuhan 430074 Hubei Peoples R China|Shenzhen Huazhong Univ Sci & Technol Res Inst Shenzhen 518057 Peoples R China|Collaborat Innovat Ctr Adv Ship & Deep Sea Explor Shanghai 200240 Peoples R China;

    Jacobs Univ Bremen Dept Comp Sci & Elect Engn Campus Ring 1 D-28759 Bremen Germany;

    Huazhong Univ Sci & Technol State Key Lab Digital Mfg Equipment & Technol Wuhan 430074 Hubei Peoples R China;

    China Ship Dev & Design Ctr Wuhan 430064 Hubei Peoples R China;

    Huazhong Univ Sci & Technol Sch Naval Architecture & Ocean Engn Wuhan 430074 Hubei Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Hybrid underwater robotic vehicle; Multi-task; VxWorks; Fuzzy logic; Heading control;

    机译:混合水下机器人车辆;多任务;VxWorks;模糊逻辑;航向控制;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号