首页> 外文期刊>Ocean Engineering >Numerical simulation of vortex-induced vibration of long flexible risers using a SDVM-FEM coupled method
【24h】

Numerical simulation of vortex-induced vibration of long flexible risers using a SDVM-FEM coupled method

机译:SDVM-FEM耦合方法对长挠性立管涡激振动的数值模拟

获取原文
获取原文并翻译 | 示例
           

摘要

This paper presents a grid-independent numerical methodology that couples the strip theory based discrete vortex method (SDVM) with the finite element method (FEM) to simulate the vortex-induced vibration (VIV) of a long flexible vertical riser. Based on the strip theory, a three-dimensional flow filed is approximately simulated by a series of computational 'flow strips'. A Lagrangian discrete vortex method is employed to numerically solve the unsteady vorticity transport equations of each 'flow strip'. The flexible riser is modelled as a tensioned Bernoulli-Euler beam with the dynamical equation solved by the finite element method in time domain. The two-dimensional DVM code is firstly validated for the VIV simulation of a rigid cylinder that was experimentally studied by Khalak and Williamson (1996). Referring to two typical experimental configurations of Lehn (2003) and Chaplin et al. (2005), the VIV of a long flexible riser immersed in a uniform and stepped incoming flow are numerically simulated, respectively. A good agreement was achieved through detailed comparisons between the present numerical prediction and the experimental data, including the structural in-line and cross-flow VIV response modes, root mean square amplitudes and the dominant frequency. The occurrence of standing and travelling wave responses, dual resonance between in-line and cross-flow motions and figure-eight trajectory are reported. The wake patterns corresponding to two response waves are also presented and investigated. Related to structural local vibration amplitude, two principle vortex patterns resembling the '2S' and '2P' modes are identified in the wake. The standing wave component of structural response determines the vortex shedding pattern. The travelling wave component affects the spanwise vortices shedding at different phases.
机译:本文提出了一种与网格无关的数值方法,该方法将基于条带理论的离散涡旋方法(SDVM)与有限元方法(FEM)耦合,以模拟长挠性垂直立管的涡激振动(VIV)。基于条带理论,通过一系列计算“流条”大致模拟了三维流场。拉格朗日离散涡旋方法用于数值求解每个“流动带”的非定常涡旋传输方程。柔性立管建模为张紧的Bernoulli-Euler梁,并通过时域有限元方法求解动力学方程。二维DVM代码首先通过Khalak和Williamson(1996)实验研究的刚性圆柱体的VIV仿真验证。参考Lehn(2003)和Chaplin等人的两个典型实验配置。 (2005年),分别模拟了一个长的柔性立管沉浸在均匀和逐步进入的流动中的VIV。通过对目前的数值预测和实验数据进行详细的比较,包括结构的在线和交叉流VIV响应模式,均方根振幅和主频,可以很好地达成共识。报告了驻波和行波响应的发生,直线和横流运动之间的双重共振以及八字形轨迹。还介绍并研究了与两个响应波相对应的唤醒模式。与结构局部振动振幅有关,在尾流中识别出两个类似于“ 2S”和“ 2P”模式的主要涡旋图。结构响应的驻波分量决定了涡旋脱落模式。行波分量影响在不同相位处的展向涡旋脱落。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号