首页> 外文期刊>Nuclear Technology >ELECTRON DOSE KERNELS TO ACCOUNT FOR SECONDARY PARTICLE TRANSPORT IN DETERMINISTIC SIMULATIONS
【24h】

ELECTRON DOSE KERNELS TO ACCOUNT FOR SECONDARY PARTICLE TRANSPORT IN DETERMINISTIC SIMULATIONS

机译:电子剂量核在确定性模拟中考虑二次粒子的运输

获取原文
获取原文并翻译 | 示例
       

摘要

For low-energy photons, charged-particle equilibrium usually exists within the patient treatment volume, in which case the photon absorbed dose D is equal to the collisional kerma K_c; however, this is not true for the dose buildup region near the surface of the patient or at interfaces of dissimilar materials, such as tissue/lung, where corrections for secondary electron transport may be significant. This is readily treated in Monte Carlo codes, yet difficult to treat explicitly in deterministic codes due to the large optical thicknesses and added numerical complexities in reaching convergence in photon-electron transport problems. To properly treat three-dimensional electron transport physics deterministically, yet still achieve reasonably fast and accurate whole-body computation times using high-energy photons, angular-energy-dependent transport "electron dose kernels" (EDK-S_N)rnhave been developed. These kernels were derived via full physics Monte Carlo electron transport simulations and are applied using scaling based on rapid deterministic photon solutions over the problem phase-space, thereby accounting for the dose from charged-particle electron transport. As a result, accurate whole-body doses may be rapidly achieved for high-energy photon sources by performing a single deterministic S_N multigroup photon calculation on a parallel cluster with PENTRAN, then linking the S_N-derived photon fluxes and net currents to Monte Carlo-based EDKs to account for a full physics dose. Water phantom results using a uniform 0- to 8-MeV step uniform beam indicate that the dose can be accurately obtained within the uncertainty of a full physics Monte Carlo simulation. Followup work will implement this method on phantoms.
机译:对于低能光子,通常在患者治疗空间内存在带电粒子平衡,在这种情况下,光子吸收剂量D等于碰撞释药K_c;然而,对于患者表面附近或异种材料(例如组织/肺)界面处的剂量累积区域,情况并非如此,在这种情况下,二次电子传输的校正可能很重要。这在蒙特卡洛代码中易于处理,但是由于较大的光学厚度和在达到光子电子传输问题中的收敛性时增加了数值复杂性,因此很难在确定性代码中明确处理。为了确定性地正确处理三维电子传输物理学,但仍使用高能光子实现相当快和准确的全身计算时间,已开发了依赖于角能量的传输“电子剂量核”(EDK-S_N)。这些内核是通过完全物理学的蒙特卡洛电子传输模拟得出的,并基于在问题相空间上基于快速确定性光子解的缩放比例来应用,从而解决了带电粒子电子传输的剂量问题。结果,通过在具有PENTRAN的并行簇上执行单个确定性S_N多组光子计算,然后将S_N衍生的光子通量和净电流链接到Monte Carlo-,可以快速获得高能光子源的准确全身剂量。基于EDK来说明完整的物理剂量。使用0到8 MeV均匀步长均匀束的水体模型结果表明,可以在完整的物理蒙特卡洛模拟的不确定性范围内准确获得剂量。后续工作将在幻像上实现此方法。

著录项

  • 来源
    《Nuclear Technology》 |2009年第3期|906-918|共13页
  • 作者单位

    University of Florida, Nuclear and Radiological Engineering Department, Gainesville, Florida 32611 Medical College of Georgia, Georgia Radiotherapy Treatment Center, Department of Radiology Augusta, Georgia 30912;

    University of Florida, Nuclear and Radiological Engineering Department, Gainesville, Florida 32611;

    University of Florida, Nuclear and Radiological Engineering Department, Gainesville, Florida 32611;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    PENTRAN; kernels; Monte Carlo;

    机译:奔腾;谷粒;蒙特卡洛;
  • 入库时间 2022-08-18 00:44:20

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号