【24h】

Time resolution deterioration with increasing crystal length in a TOF-PET system

机译:时间分辨率随着TOF-PET系统中晶体长度的增加而降低

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Highest time resolution in scintillator based detectors is becoming more and more important. In medical detector physics L(Y)SO scintillators are commonly used for time of flight positron emission tomography (TOF-PET). Coincidence time resolutions (CTRs) smaller than 100 ps FWHM are desirable in order to improve the image signal to noise ratio and thus give benefit to the patient by shorter scanning times. Also in high energy physics there is the demand to improve the timing capabilities of calorimeters down to 10 ps. To achieve these goals it is important to study the whole chain, i.e. the high energy particle interaction in the crystal, the scintillation process itself, the scintillation light transfer in the crystal, the photodetector and the electronics. Time resolution measurements for a PET like system are performed with the time-over-threshold method in a coincidence setup utilizing the ultra-fast amplifier-discriminator NINO. With 2×2×3 mm~3 LSO:Ce codoped 0.4%Ca crystals coupled to commercially available SiPMs (Hamamatsu S10931-050P MPPC) we achieve a CTR of 108 ± 5 ps FWHM at an energy of 511 keV. Under the same experimental conditions an increase in crystal length to 5 mm deteriorates the CTR to 123 ± 7 ps FWHM, 10 mm to 143 ± 7 ps FWHM and 20 mm to 176 ± 7 ps FWHM. This degradation in CTR is caused by the light transfer efficiency (LTE) and light transfer time spread (LTTS) in the crystal. To quantitatively understand the measured values, we developed a Monte Carlo simulation tool in MATLAB incorporating the timing properties of the photodetector and electronics, the scintillation properties of the crystal and the light transfer within the crystal simulated by SUTRANI. In this work, we show that the predictions of the simulation are in good agreement with the experimental data. We conclude that for longer crystals the deterioration in CTR is mainly caused by the LTE, i.e. the ratio of photons reaching the photodetector to the total amount of photons generated by the scintillation whereas the LTTS influence is partly offset by the gamma absorption in the crystal.
机译:在基于闪烁体的探测器中,最高的时间分辨率变得越来越重要。在医学检测器物理学中,L(Y)SO闪烁体通常用于飞行时间正电子发射断层扫描(TOF-PET)。小于100 ps FWHM的重合时间分辨率(CTR)是理想的,以提高图像信噪比,从而通过缩短扫描时间为患者带来益处。同样在高能物理学中,也需要将热量计的定时能力提高到10 ps。为了实现这些目标,重要的是研究整个链条,即晶体中的高能粒子相互作用,闪烁过程本身,晶体中的闪烁光传输,光电探测器和电子器件。对于类似PET的系统,时间分辨率测量是使用超快速放大器/判别器NINO在巧合设置中使用阈值以上时间方法进行的。通过将2×2×3 mm〜3 LSO:Ce共掺杂的0.4%Ca晶体与市售SiPM(Hamamatsu S10931-050P MPPC)耦合,我们在511 keV能量下实现了108±5 ps FWHM的CTR。在相同的实验条件下,将晶体长度增加到5 mm,会使CTR下降到123±7 ps FWHM,从10 mm到143±7 ps FWHM,从20 mm到176±7 ps FWHM。 CTR的这种下降是由晶体中的光传输效率(LTE)和光传输时间扩展(LTTS)引起的。为了定量地了解测量值,我们在MATLAB中开发了一个蒙特卡洛模拟工具,该工具结合了光电探测器和电子设备的定时特性,晶体的闪烁特性以及SUTRANI模拟的晶体内部的光传输。在这项工作中,我们表明模拟的预测与实验数据非常吻合。我们得出结论,对于更长的晶体,CTR的下降主要由LTE引起,即到达光电探测器的光子与闪烁产生的光子总量之比,而LTTS的影响部分被晶体中的γ吸收所抵消。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号