...
首页> 外文期刊>Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment >Calibration and optimization of Bragg edge analysis in energy-resolved neutron imaging experiments
【24h】

Calibration and optimization of Bragg edge analysis in energy-resolved neutron imaging experiments

机译:能源分辨中子成像实验中布拉格边缘分析的校准与优化

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The investigation of microstructure of crystalline materials is one of the possible and frequently used applications of energy-resolved neutron imaging. The position of Bragg edges is defined by sharp changes in neutron transmission and can thus be determined by the measurement of the transmission spectra as a function of neutron wavelength. The accuracy of this measurement depends on both the data analysis technique and the quality of the measured spectra. While the optimization of reconstruction methods was addressed in several previous studies, here we introduce an important prerequisite when aiming for high resolution Bragg edge strain imaging - a well calibrated flight path across the entire field of view (FOV). Compared to e.g. powder diffraction, imaging often uses slightly different geometries and hence requires a calibration for each particular setup. We herein show the importance of this calibration across the entire FOV in order to determine the instrumental error correction for pulsed neutron beamlines. In addition, we also consider the precision of Bragg edge reconstruction as a function of integration time and the minimal sample area. We demonstrate that, with a proper calibration procedure, the Bragg edge wavelength distribution across the entire sample can be reconstructed with an accuracy of Δλ/λ = ± ~0.01%. Our experiments indicate that the strain maps of Inconel 625 samples printed by a direct metal laser melting additive manufacturing technique can be reconstructed with the precision of ± ~ 100 με. The full FOV calibration technique becomes even more important with the development of advanced neutron energy-resolved imaging beamlines and detectors with large FOVs.
机译:结晶材料微观结构的研究是能量分辨中子成像的可能和通常使用的应用之一。布拉格边缘的位置由中子传输的急剧改变来定义,因此可以通过作为中子波长的函数的透射光谱测量来确定。该测量的准确性取决于数据分析技术和测量光谱的质量。虽然在以前的几项研究中解决了重建方法的优化,但在这里,我们在瞄准高分辨率布拉格边缘应变成像时介绍了一个重要的先决条件 - 整个视野(FOV)的良好校准的飞行路径。与例如。粉末衍射,成像通常使用略微不同的几何形状,因此需要对每个特定设置的校准。这里我们在整个FOV上展示了这种校准的重要性,以确定脉冲中子束线的乐器误差校正。此外,我们还考虑布拉格边缘重建的精度作为集成时间和最小样本区域的函数。我们证明,通过适当的校准过程,可以以Δλ/λ=±〜0.01%的精度重建整个样本的布拉格边缘波长分布。我们的实验表明,由直接金属激光熔化添加剂制造技术印刷的Inconel 625样品的应变映射可以以±〜100μl的精度重建。随着高中中子能源分辨成像束线和具有大型FOV的探测器的开发,全FOV校准技术变得更加重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号