首页> 外文期刊>Nuclear fusion >Interaction of plasma rotation and resonant magnetic perturbation fields in tokamaks
【24h】

Interaction of plasma rotation and resonant magnetic perturbation fields in tokamaks

机译:托卡马克中等离子体旋转与共振磁扰动场的相互作用

获取原文
获取原文并翻译 | 示例
       

摘要

The interaction between plasma rotation and perturbation fields is described by the ambipolarity constraint and the parallel momentum balance, both emanating from the revisited neoclassical theory, and the electrodynamical screening of the resonant perturbation field at the singular surfaces. This screening depends mainly on the slip between the rotating plasma and the resonant field. The neoclassical theory, valid in the collision dominated regime and accounting for gyro-viscosity, includes arbitrary plasma cross-sections, anomalous viscosity, ponderomotive forces, neutral beam injection (NBI), pressure anisotropization and a momentum source due to ergodicity which has a considerable impact on the plasma rotation as demonstrated in TEXTOR. To estimate the influence of the perturbation coils on the plasma rotation, the radial magnetic field (proportional to the helical flux function) is Fourier analysed (using 'intrinsic' coordinates) and the total field is used for field line tracing thus obtaining the ponderomotive momentum input and the extension Δ_e of the ergodic layer at the edge. Both procedures account for the full plasma geometry. Δ_e is assumed to be independent of the rotational state because of the boundary condition V_t = 0. In a second step the obtained velocity profiles are used to compute the screening at the singular layers and thus the reduction of the island width due to plasma rotation. The main results can be summarized as follows. Using in the case of TEXTOR shot #94092 the diffusion coefficient D_M = 2 × 10~(-6) m (typical for the 12/4 configuration) the observed increase in υ_t by Δ_(υt) ≈ 5 km s~(-1) can be reproduced. Inside the plasma the slip prevents any influence of the ponderomotive forces, thus yielding a constant increase in the υ_t(r)-profile by Δ_(υt). Assuming in the case of the error field correction coils (n = 1) of JET the current I_(hel) = 30 kA and using for the plasma background the data of shot #67951 in the static case, an ergodized layer (Δ_e(n = 1) ≈ 20 cm in the vicinity of the unperturbed x-point) and large m = 2, m = 3 (n = 1) islands (W_(m=2,n=1)=10 cm) are obtained. In then = 2 configuration the analogous parameters are Δ_e(n = 2) ≈ 18cm and W_(m=2,n=2) = 4cm i.e. Δ_e stays roughly the same and the island width is strongly reduced thus indicating the superiority of this configuration. Plasma rotation (υt_(max) = 180 km s~(-1)) reduces the width W_(m=2,n=1) to a small value. (However, tearing mode physics which may lead to mode locking is not included in this consideration.).
机译:等离子体旋转和摄动场之间的相互作用是由双极性约束和平行动量平衡来描述的,两者均来自重新讨论的新古典理论以及奇异面上共振摄动场的电动力学筛选。这种屏蔽主要取决于旋转等离子体和共振场之间的滑动。新古典理论在碰撞为主的体系中有效并考虑了陀螺粘度,包括任意的等离子体横截面,异常粘度,质动力,中性束注入(NBI),压力各向异性和由于遍历性引起的动量源如TEXTOR中所示对等离子体旋转的影响。为了估算微扰线圈对等离子体旋转的影响,对径向磁场(与螺旋通量函数成比例)进行傅立叶分析(使用“本征”坐标),并将总场用于场线跟踪,从而获得质动力输入和遍历层在边缘处的延伸Δ_e。两种方法都说明了完整的等离子体几何形状。由于边界条件V_t = 0,假定Δ_e与旋转状态无关。在第二步中,将获得的速度曲线用于计算奇异层的屏蔽,从而减小由于等离子体旋转而引起的岛宽的减小。主要结果可总结如下。在TEXTOR镜头#94092的情况下,使用扩散系数D_M = 2×10〜(-6)m(对于12/4配置典型)观察到的υ_t增加了Δ_(υt)≈5 km s〜(-1 )可以复制。在等离子体内部,滑移防止了重磁势的任何影响,从而使υ_t(r)轮廓不断增加Δ_(υt)。假设在JET的误差场校正线圈(n = 1)的情况下,电流I_(hel)= 30 kA,并且在静态情况下将等离子#67951的数据用作等离子背景,则经过渗层处理(Δ_e(n = 1)在不受干扰的x点附近≈20 cm),大m = 2,得到m = 3(n = 1)个岛(W_(m = 2,n = 1)= 10 cm)。在当时= 2的配置中,类似参数为Δ_e(n = 2)≈18cm,而W_(m = 2,n = 2)= 4cm,即Δ_e保持大致相同,并且岛宽大大减小,因此表明该配置的优越性。等离子旋转(υt_(max)= 180 km s〜(-1))将宽度W_(m = 2,n = 1)减小为较小值。 (但是,此考虑不包括可能导致模式锁定的撕裂模式物理现象。)

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号