首页> 外文期刊>Nuclear fusion >Reduced electron thermal transport in low collisionality H-mode plasmas in DIII-D and the importance of TEM/ETG-scale turbulence
【24h】

Reduced electron thermal transport in low collisionality H-mode plasmas in DIII-D and the importance of TEM/ETG-scale turbulence

机译:DIII-D中低碰撞性H型等离子体中电子的热传递减少,以及TEM / ETG尺度湍流的重要性

获取原文
获取原文并翻译 | 示例
       

摘要

The first systematic investigation of core electron thermal transport and the role of local ion temperature gradient/trapped electron mode/electron temperature gradient (ITG/TEM/ETG)-scale core turbulence is performed in high temperature, low collisionality H-mode plasmas in the DIII-D tokamak. Wavenumber spectra of L-mode and H-mode density turbulence are measured by Doppler backscattering. H-mode wavenumber spectra are directly contrasted for the first time with nonlinear gyrokinetic simulation results. Core ITG/TEM-scale turbulence is substantially reduced/suppressed by E × B shear promptly after the L-H transition, resulting in reduced electron thermal transport across the entire minor radius. For small k_θ ρ_s, both experiment and nonlinear gyrokinetic simulations using the GYRO code show density fluctuation levels increasing with kθ ρ_s in H-mode (r/a = 0.6), in contrast to ITG/TEM-dominated L-mode plasmas. GYRO simulations also indicate that a significant portion of the remaining H-mode electron heat flux results directly from residual intermediate/short-scale TEM/ETG turbulence. Electron transport at substantially increased electron-to-ion temperature ratio (T_e/T_i ≥ 1, r/a ≤ 0.35) has been investigated in ECH-assisted, quiescent H-mode plasmas. A synergistic increase in core electron and ion thermal diffusivity (normalized to the gyro-Bohm diffusivity) is found with applied ECH. From linear stability analysis, the TEM mode is expected to become the dominant linear instability with ECH due to increased electron-to-ion temperature ratio and a reduction in the ion temperature gradient. This is consistent with increased electron temperature fluctuations and core electron thermal diffusivity observed experimentally. The reduced ion temperature gradient likely results from a reduction in the ITG critical gradient due to increased T_e/ T_i and reduced E × B shear. These studies are performed at collisonality (v_e~* ~ 0.05, r/a ≤ 0.6) and address transport in electron heat-dominated regimes, thought to be important in ITER due to α-particle heating.
机译:在高温,低碰撞性的H型等离子体中对核电子的热输运和局部离子温度梯度/俘获电子模式/电子温度梯度(ITG / TEM / ETG)级核湍流的作用进行了首次系统研究。 DIII-D托卡马克。通过多普勒反向散射测量L模式和H模式密度湍流的波数谱。首次将H模波数谱与非线性陀螺动力学仿真结果进行首次对比。在L-H跃迁之后,通过E×B剪切,核心ITG / TEM尺度的湍流被显着降低/抑制,从而导致电子在整个较小半径上的热传输减少。对于较小的k_θρ_s,与ITG / TEM为主的L模式等离子体相反,在G模式下的实验和非线性陀螺动力学仿真均显示,密度波动水平随kθρ_s在H模式下增加(r / a = 0.6)。 GYRO模拟还表明,剩余的H模式电子热通量的很大一部分直接来自残余的中间/短尺度TEM / ETG湍流。在ECH辅助的静态H型等离子体中,已经研究了电子与离子温度比(T_e / T_i≥1,r / a≤0.35)显着增加时的电子传输。使用ECH时,发现核心电子和离子的热扩散率(归一化为陀螺-波姆扩散率)呈协同增加。根据线性稳定性分析,由于电子对离子的温度比增加和离子温度梯度的减小,预计TEM模式将成为ECH的主要线性不稳定性。这与实验观察到的电子温度波动增加和核心电子热扩散率一致。离子温度梯度降低可能是由于T_e / T_i增加和E×B剪切力降低导致ITG临界梯度降低所致。这些研究是在Collisonality(v_e〜*〜0.05,r / a≤0.6)下进行的,并解决了电子热控制下的输运问题,由于α粒子的加热,这在ITER中很重要。

著录项

  • 来源
    《Nuclear fusion》 |2012年第2期|p.023003.1-023003.15|共15页
  • 作者单位

    University of California, Los Angeles, Los Angeles, CA 90095-1547, USA;

    University of California, San Diego, La Jolla, CA 92093, USA;

    University of California, Los Angeles, Los Angeles, CA 90095-1547, USA;

    University of California, Los Angeles, Los Angeles, CA 90095-1547, USA;

    University of California, Los Angeles, Los Angeles, CA 90095-1547, USA;

    Massachsetts Institute of Technology, Cambridge, MA 02139, USA;

    University of California, Los Angeles, Los Angeles, CA 90095-1547, USA;

    University of California, Los Angeles, Los Angeles, CA 90095-1547, USA;

    General Atomics, San Diego, CA 92186-5608, USA;

    General Atomics, San Diego, CA 92186-5608, USA;

    University of Wisconsin-Madison, Madison, WI 53706, USA;

    University of Wisconsin-Madison, Madison, WI 53706, USA;

    Princeton Plasma Physics Laboratory, Princeton, NJ 08543-0451, USA;

    General Atomics, San Diego, CA 92186-5608, USA;

    Lawrence Livermore National Laboratory, Livermore, CA 94551, USA;

    University of California, Los Angeles, Los Angeles, CA 90095-1547, USA;

    General Atomics, San Diego, CA 92186-5608, USA;

    University of Texas at Austin, Austin, TX 78712-1047, USA;

    General Atomics, San Diego, CA 92186-5608, USA;

    General Atomics, San Diego, CA 92186-5608, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 00:43:53

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号