首页> 外文期刊>Nuclear Engineering and Design >HTGR reactor physics and fuel cycle studies
【24h】

HTGR reactor physics and fuel cycle studies

机译:HTGR反应堆物理和燃料循环研究

获取原文
获取原文并翻译 | 示例
       

摘要

The high-temperature gas-cooled reactor (HTGR) appears as a good candidate for the next generation of nuclear power plants. In the "HTR-N" project of the European Union Fifth Framework Program, analyses have been performed on a number of conceptual HTGR designs, derived from reference pebble-bed and hexagonal block-type HTGR types. It is shown that several HTGR concepts are quite promising as systems for the incineration of plutonium and possibly minor actinides. These studies were mainly concerned with the investigation and intercomparison of the plutonium and actinide burning capabilities of a number of HTGR concepts and associated fuel cycles, with emphasis on the use of civil plutonium from spent LWR uranium fuel (first generation Pu) and from spent LWR MOX fuel (second generation Pu). Besides, the "HTR-N" project also included activities concerning the validation of computational tools and the qualification of models. Indeed, it is essential that validated analytical tools are available in the European nuclear community to perform conceptual design studies, industrial calculations (reload calculations and the associated core follow), safety analyses for licensing, etc., for new fuel cycles aiming at plutonium and minor actinide (MA) incineration/transmutation without multi-reprocessing of the discharged fuel. These validation and qualification activities have been centred round the two HTGR systems currently in operation, viz. the HTR-10 and the HTTR. The re-calculation of the HTTR first criticality with a Monte Carlo neutron transport code now yields acceptable correspondence with experimental data. Also calculations by 3D diffusion theory codes yield acceptable results. Special attention, however, has to be given to the modelling of neutron streaming effects. For the HTR-10 the analyses focused on first criticality, temperature coefficients and control rod worth. Also in these studies a good correspondence between calculation and experiment is observed for the 3D diffusion theory codes.
机译:高温气冷堆(HTGR)似乎是下一代核电站的理想选择。在欧盟第五框架计划的“ HTR-N”项目中,已经对许多概念性HTGR设计进行了分析,这些设计是从参考卵石床和六角块型HTGR类型派生而来的。结果表明,几种高温气冷堆概念非常有前景,可作为systems和可能的次minor系元素的焚烧系统。这些研究主要涉及对许多高温气冷堆概念和相关燃料循环的p和act系元素燃烧能力的研究和比较,重点是使用废轻水铀燃料(第一代Pu)和废轻水堆中的民用p。 MOX燃料(第二代Pu)。此外,“ HTR-N”项目还包括有关计算工具验证和模型验证的活动。确实,至关重要的是,欧洲核共同体必须有经过验证的分析工具,才能进行针对conceptual和燃料的新燃料循环的概念设计研究,工业计算(重载计算和相关的堆芯跟踪),许可的安全性分析等。小act系元素(MA)焚化/ trans变,无需对排放的燃料进行多次后处理。这些验证和鉴定活动集中在当前运行的两个HTGR系统周围。 HTR-10和HTTR。现在用蒙特卡洛中子输运代码重新计算HTTR的第一临界度,可以得出与实验数据相符的结果。同样,通过3D扩散理论代码进行的计算也会得出可接受的结果。但是,必须特别注意中子流效应的建模。对于HTR-10,分析重点放在第一临界,温度系数和控制棒价值上。同样在这些研究中,对于3D扩散理论代码,可以观察到计算与实验之间的良好对应关系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号