...
首页> 外文期刊>Nuclear Engineering and Design >High-accuracy CFD prediction methods for fluid and structure temperature fluctuations at T-junction for thermal fatigue evaluation
【24h】

High-accuracy CFD prediction methods for fluid and structure temperature fluctuations at T-junction for thermal fatigue evaluation

机译:用于热疲劳评估的T形结处流体和结构温度波动的高精度CFD预测方法

获取原文
获取原文并翻译 | 示例
           

摘要

Temperature fluctuations generated by the mixing of hot and cold fluids at a T-junction, which is widely used in nuclear power and process plants, can cause thermal fatigue failure. The conventional methods for evaluating thermal fatigue tend to provide insufficient accuracy, because they were developed based on limited experimental data and a simplified one-dimensional finite element analysis (FEA). CFD/FEA coupling analysis is expected as a useful tool for the more accurate evaluation of thermal fatigue. The present paper aims to verify the accuracy of proposed numerical methods of simulating fluid and structure temperature fluctuations at a T-junction for thermal fatigue evaluation. The dynamic Smagorinsky model (DSM) is used for large eddy simulation (LES) sub-grid scale (SGS) turbulence model, and a hybrid scheme (HS) is adopted for the calculation of convective terms in the governing equations. Also, heat transfer between fluid and structure is calculated directly through thermal conduction by creating a mesh with near wall resolution (NWR) by allocating grid points within the thermal boundary sub-layer. The simulation results show that the distribution of fluid temperature fluctuation intensity and the range of structure temperature fluctuation are remarkably close to the experimental results. Moreover, the peak frequencies of power spectrum density (PSD) of both fluid and structure temperature fluctuations also agree well with the experimental results. Therefore, the numerical methods used in the present paper are of sufficiently high accuracy to be suitable for the CFD prediction of highly fluctuating flow and temperature fields. (C) 2015 Elsevier B.V. All rights reserved.
机译:在核电站和加工厂中广泛使用的,在T形结处混合热流体和冷流体而产生的温度波动会导致热疲劳失效。传统的评估热疲劳的方法往往无法提供足够的准确性,因为它们是基于有限的实验数据和简化的一维有限元分析(FEA)开发的。 CFD / FEA耦合分析有望作为更准确评估热疲劳的有用工具。本文旨在验证所提出的模拟T形结处的流体和结构温度波动以进行热疲劳评估的数值方法的准确性。动态Smagorinsky模型(DSM)用于大涡模拟(LES)子网格规模(SGS)湍流模型,并采用混合方案(HS)来计算控制方程中的对流项。而且,通过在热边界子层内分配网格点来创建具有近壁分辨率(NWR)的网格,可以直接通过导热来计算流体与结构之间的热传递。仿真结果表明,流体温度波动强度的分布和结构温度波动的范围与实验结果非常接近。此外,流体和结构温度波动的功率谱密度(PSD)的峰值频率也与实验结果非常吻合。因此,本文使用的数值方法具有足够高的精度,适合于对高度波动的流场和温度场进行CFD预测。 (C)2015 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Nuclear Engineering and Design》 |2015年第7期|98-109|共12页
  • 作者单位

    JGC Corp, Proc Technol Div, EN Technol Ctr, Nishi Ku, Yokohama, Kanagawa 2206001, Japan;

    JGC Corp, Proc Technol Div, EN Technol Ctr, Nishi Ku, Yokohama, Kanagawa 2206001, Japan;

    Univ Tokyo, Sch Engn, Nucl Engn & Management, Bunkyo Ku, Tokyo 1138656, Japan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号