首页> 美国卫生研究院文献>Entropy >Entropy Analysis of Temperature Swing Adsorption for CO2 Capture Using the Computational Fluid Dynamics (CFD) Method
【2h】

Entropy Analysis of Temperature Swing Adsorption for CO2 Capture Using the Computational Fluid Dynamics (CFD) Method

机译:使用计算流体动力学(CFD)方法熵分析CO2捕获的温度波浪吸附

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Carbon capture by adsorption is supposed to be an effective method to reduce CO2 emissions, among which Temperature Swing Adsorption (TSA) can utilize low-grade thermal energy even from renewable energy source. At present, TSA technology still has several challenges to be practical application, such as intensive energy-consumption and low energy-efficiency. Thermodynamics could be a powerful method to explore the energy conversion mechanism of TSA, among which entropy analysis could further provide a clear picture on the irreversible loss, even with a possible strategy of energy-efficient improvement. Based on the theory of non-equilibrium thermodynamics, the entropy analysis of TSA cycle is conducted, using the Computational Fluid Dynamics (CFD) method. The physical model and conservation equations are established and calculation methods for entropy generation are presented as well. The entropy generation of each process in cycle is analyzed, and the influence from the main parameters of desorption process is presented with optimization analysis. Finally, the performance of the cycle with regeneration is compared with that of the cycle without regeneration, and the method of reducing the entropy generation is obtained as well. This paper provides possible directions of performance improvement of TSA cycle with regards on energy utilization efficiency and the reduction of irreversible loss.
机译:通过吸附碳捕获被认为是一种有效的方法来减少二氧化碳排放量,其中变温吸附(TSA)甚至可以从可再生能源利用低等级热能。目前,TSA技术仍然有几项挑战是实际应用,例如密集的能量消耗和低能量效率。热力学可能是探讨TSA的能量转换机制的强大方法,其中熵分析可以进一步为不可逆损失提供清晰的图片,即使有节能改善的可能策略也是如此。基于非平衡热力学理论,使用计算流体动力学(CFD)方法进行TSA周期的熵分析。建立了物理模型和保护方程,并介绍了熵生成的计算方法。分析了每个过程中每个过程的熵生成,并通过优化分析提出了解吸过程的主要参数的影响。最后,将循环与再生的性能进行比较,而没有再生的循环,也获得了减少熵生成的方法。本文提供了在能源利用效率和不可逆损失的减少方面的TSA周期性能改进的可能方向。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号