首页> 外文期刊>Nuclear Engineering and Design >Conceptual design of Super FR for MA transmutation with axially heterogeneous core
【24h】

Conceptual design of Super FR for MA transmutation with axially heterogeneous core

机译:轴向异构芯的MA嬗变超级FR的概念设计

获取原文
获取原文并翻译 | 示例
           

摘要

Supercritical water cooled Fast Reactor (Super FR) is featured with the large coolant density reduction by almost 1/10 from the core inlet to the outlet. Since Minor Actinides (MAs) not only have large neutron capture cross sections for thermal neutrons, but also can fission with fast neutrons, MA transmutation performance of Super FR may greatly depend on MA loading positions in the core axial direction of Super FR.However, such investigations have never been conducted. Hence, this study aims to design a Super FR transmutation core concept with the axial configuration of multiple layers of Mixed Oxide (MOX) and blanket fuels, with a focus on the influence of the large axial coolant density change on MA transmutation and core characteristics.With the design criteria of the negative Void Reactivity Coefficient (VRC), the Maximum Cladding Surface Temperature (MCST) 650 degrees C and the Maximum Linear Heat Generation Rate (MLHGR) 39 kW/m, three-dimensional neutronics and thermal-hydraulics coupled core burnup calculations have been carried out. Assembly-wise coolant flow rate distribution is determined to attain high core average outlet temperature and the core characteristics of different designs have been evaluated for the equilibrium core after the cores have reached equilibrium states with given fuel shuffling schemes. It has been shown that the MA transmutation amount is limited by deterioration of VRC due to increase of Pu enrichment for compensating the reactivity penalty by MA loading. Moreover, such influence has been found to be more significant in the lower region of the core, where the coolant density is relatively high. Hence, the core design with MA loading to the upper MOX layer is favorable for improving the MA transmutation performance. However, the trade-off relationship between the MA transmutation amount and thermal-hydraulics performance (increase of MLHGR and decrease of average outlet temperature) has been revealed. To overcome the issue, the core radial zoning has been applied and it has been found effective to suppress the trade-off relationship.
机译:超临界水冷的快速反应器(超级FR)具有较大的冷却剂密度降低近1/10,从芯入口到出口。由于次要的散光(Mas)不仅具有用于热中子的大中子捕获横截面,而且还可以用快上裂开裂变,Super Fr的MA嬗变性能可能大大取决于Super FR的核心轴向上的MA加载位置。从未进行过这种调查。因此,本研究旨在通过多层混合氧化物(MOX)和橡皮布燃料的轴向构造来设计超级FR嬗变核心概念,重点是大轴向冷却剂密度变化对MA嬗变和核心特性的影响。随着负空转反应性系数(VRC)的设计标准,最大包层表面温度(MCST)<650℃和最大线性发热速率(MLHGR)<39千瓦/米,三维中子学和热液压系统已经进行了耦合的核心燃烧计算。确定组装冷却剂流量分布以获得高核平均出口温度,并且在核心达到燃料混洗方案的平衡状态达到平衡状态之后,已经评估了不同设计的核心特性。已经表明,由于PU富集的增加,MA嬗变量受VRC的劣化来限制PU富集以补偿MA载荷的反应性惩罚。此外,已经发现这种影响在芯的下部区域中更为显着,其中冷却剂密度相对较高。因此,具有MA加载到上部MOX层的核心设计有利于改善MA嬗变性能。然而,已经揭示了MA嬗变量和热液压性能之间的权衡关系(MLHGR的增加和平均出口温度的降低)。为了克服这个问题,已经应用了核心径向分区,并且已经发现有效地抑制权衡关系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号