首页> 外文期刊>Nuclear Engineering and Design >Fuel performance optimization of U_3Si_2-SiC design during normal, power ramp and RIA conditions
【24h】

Fuel performance optimization of U_3Si_2-SiC design during normal, power ramp and RIA conditions

机译:在正常,功率斜坡和RIA条件下,U_3Si_2-SiC设计的燃料性能优化

获取原文
获取原文并翻译 | 示例
       

摘要

Benefited from its higher mechanical strength and much-improved oxidation resistance at very high temperatures (> 1200 degrees C), SiC cladding is one of the promising accident tolerant fuel (ATF) concepts. Considering the thermal conductivity degradation of SiC cladding after irradiation and its negligible creep rate, adopting conventional UO2 with SiC cladding can lead to aggravated fission gas release and elevated fuel centerline temperatures. In this work, U3Si2 fuel with its high thermal conductivity is considered in place of UO2, when adopting SiC cladding. First, the preliminary full core simulation for U3Si2-SiC was conducted to show its holistic fuel performance compared to the current UO2-Zircaloy fuel. Then the most limiting fuel rod was selected based on the calculated chemically vapor deposited (CVD) SiC failure risk from the full core simulation. For the limiting rod, fuel-clad gap optimization was conducted to minimize CVD SiC failure risk. Subsequently, power ramp history was appended to the normal power history and full core simulation analysis for updated U3Si2-SiC design was re-performed to ensure the effectiveness of the chosen gap width. For the limiting rod, reactivity-initiated accident (RIA) analysis at hot zero power (HZP) was analyzed to evaluate its performance and infer its potential failure modes. The results from normal operation and power ramp simulations implied that CVD SiC failure risk was mainly induced by the strong pellet-cladding mechanical interaction (PCMI) and the failure probability of CVD SiC can be effectively minimized to 2.0 x 10(-7) through enlarging the fuel-clad as-fabricated gap width. The leading failure mode for U3Si2-SiC fuel system during RIA changed from fuel melting to Ceramic Matrix Composite (CMC) failure with increasing burnup.
机译:得益于其较高的机械强度和在非常高的温度(> 1200摄氏度)下大大提高的抗氧化性,SiC覆层是有前途的耐事故燃料(ATF)概念之一。考虑到辐照后SiC覆层的热导率下降及其蠕变速率可忽略不计,采用带SiC覆层的常规UO2会导致裂变气体释放加剧和燃料中心线温度升高。在这项工作中,当采用SiC包层时,可以考虑使用具有高导热率的U3Si2燃料代替UO2。首先,对U3Si2-SiC进行了初步的全芯模拟,以显示与目前的UO2-Zircaloy燃料相比的整体燃料性能。然后根据全芯模拟计算出的化学气相沉积(CVD)SiC失效风险来选择极限燃料棒。对于限制杆,进行了燃油包层间隙优化,以最大程度地降低CVD SiC失效的风险。随后,将功率斜坡历史记录添加到正常功率历史记录中,并对更新的U3Si2-SiC设计进行全核仿真分析,以确保所选间隙宽度的有效性。对于极限杆,分析了热零功率(HZP)下的反应性事故(RIA)分析,以评估其性能并推断其潜在的故障模式。正常运行和功率斜坡模拟的结果表明,CVD SiC失效的风险主要是由强烈的粒料-覆层机械相互作用(PCMI)引起的,并且通过增大,可以有效地将CVD SiC的失效概率降至2.0 x 10(-7)包覆燃料的预制间隙宽度。 R3期间U3Si2-SiC燃料系统的主要故障模式随着燃耗的增加而从燃料熔化变为陶瓷基复合材料(CMC)故障。

著录项

  • 来源
    《Nuclear Engineering and Design》 |2019年第11期|110276.1-110276.12|共12页
  • 作者单位

    Xi An Jiao Tong Univ Dept Nucl Sci & Technol State Key Lab Multiphase Flow Power Engn Xian 710049 Shaanxi Peoples R China|MIT Dept Nucl Sci & Engn 77 Massachusetts Ave Cambridge MA 02139 USA;

    MIT Dept Nucl Sci & Engn 77 Massachusetts Ave Cambridge MA 02139 USA;

    Xi An Jiao Tong Univ Dept Nucl Sci & Technol State Key Lab Multiphase Flow Power Engn Xian 710049 Shaanxi Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Accident tolerant fuels; Silicide fuel; SiC clad; Fuel performance;

    机译:事故容忍燃料;硅化物燃料;SiC包覆;燃油性能;
  • 入库时间 2022-08-18 04:46:03

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号