...
首页> 外文期刊>Nuclear Engineering and Design >Small modular reactor core design for civil marine propulsion using micro-heterogeneous duplex fuel. Part Ⅰ: Assembly-level analysis
【24h】

Small modular reactor core design for civil marine propulsion using micro-heterogeneous duplex fuel. Part Ⅰ: Assembly-level analysis

机译:小型模块化反应堆堆芯设计,用于使用微异质双相燃料的民用船舶推进。第一部分:装配级分析

获取原文
获取原文并翻译 | 示例
           

摘要

Civil marine reactors face a unique set of design challenges. These include requirements for a small core size and long core lifetime, a 20% cap on fissile loading, and limitations on using soluble neutron absorbers. In this reactor physics study, we seek to design a core that meets these requirements over a 15 effective full-power-years (EFPY) life at 333 MWth using homogeneously mixed all-UO2 and micro-heterogeneous ThO2-UO2 duplex fuels. In a companion (Part I) paper, we found assembly designs using 15% and 18% U-235 for UO2 and duplex fuels, respectively, loaded into 13 x 13 pin arrays. High thickness (150 mu m) ZrB2 integral fuel burnable absorber (IFBA) pins and boron carbide (B4C) control rods are used for reactivity control. Taking advantage of self-shielding effects, these designs maintain low and stable assembly reactivity with little burnup penalty.In this paper (Part II), whole-core design analyses are performed for small modular reactor (SMR) to determine whether the core remains critical for at least 15 EFPY with a reactivity swing of less than 4000 pcm, subject to appropriate constraints. The main challenge is to keep the radial form factor below its limit (1.50). Burnable poison radial-zoning is examined in the quest for a suitable arrangement to control power peaking. Optimized assemblies are loaded into a 3D reactor model in PANTHER. The PANTHER results confirm that the fissile loadings of both fuels are well-designed for the target lifetime: at the end of the (similar to)15-year cycle, the cores are on the border of criticality. The duplex fuel core can achieve (similar to)4% longer core life, has a (similar to)3% lower initial reactivity and (similar to)30% lower reactivity swing over life than the final UO2 core design. The duplex core is therefore the more successful design, giving a core life of (similar to)16 years and a reactivity swing of less than 2500 pcm, while satisfying all the neutronic safety parameters. In particular, one of the major objectives of this study is to offer/explore a thorium-based candidate alternative fuel platform for the proposed marine core. It is proven by literature reviews that the ability of the duplex fuel was never explored in the context of a single-batch, LEU, SBF, long-life SMR core. In this regard, the motivation of this paper is to understand the underlying physics of the duplex fuel and 'open the option' of designing the functional cores with both the duplex and UO2 fuel cores.
机译:民用船用反应堆面临着一系列独特的设计挑战。这些要求包括较小的堆芯尺寸和较长的堆芯寿命,裂变载荷上限为20%,以及使用可溶性中子吸收剂的限制。在此反应堆物理研究中,我们寻求使用均匀混合的全UO2和微不均匀的ThO2-UO2双相燃料设计一个能在333 MWth的15有效满功率年(EFPY)寿命内满足这些要求的堆芯。在随附的论文(第一部分)中,我们发现装配设计分别使用15%和18%的U-235分别用于UO2和双燃料,并装入13 x 13针阵列中。高厚度(150微米)ZrB2整体式燃料可燃吸收器(IFBA)销和碳化硼(B4C)控制棒用于反应性控制。利用自屏蔽效应,这些设计可保持较低且稳定的装配反应性,而燃耗损失很小。在本文(第二部分)中,对小型模块化反应堆(SMR)进行了全堆芯设计分析,以确定堆芯是否仍然很关键至少有15个EFPY,其反应性摆动小于4000 pcm,并受到适当的限制。主要挑战是将径向形状系数保持在其极限(1.50)以下。为了寻求控制功率峰值的合适装置,对可燃毒物径向分区进行了检查。将优化的装配体加载到PANTHER中的3D反应堆模型中。 PANTHER的结果证实,两种燃料的易裂变负荷都针对目标寿命进行了精心设计:在(类似于)15年周期结束时,堆芯处于临界边界。与最终的UO2堆芯设计相比,双燃料芯可延长芯寿命约4%,初始反应性降低3%,反应摆幅降低约30%。因此,双相堆芯是更成功的设计,堆芯寿命(类似于)16年,反应性摆动小于2500 pcm,同时满足所有中子安全性参数。特别是,这项研究的主要目标之一是为拟议的海洋核心提供基于expl的候选替代燃料平台。文献综述证明,在单批LEU,SBF,长寿命SMR堆芯的背景下,从未探索过双燃料的能力。在这方面,本文的动机是了解双相燃料的基本物理原理,并“开放选择”设计具有双相和UO2燃料核的功能核。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号