...
首页> 外文期刊>Progress in Nuclear Energy >Assembly-level analyses of accident-tolerant cladding concepts for a long-life civil marine SMR core using micro-heterogeneous duplex fuel
【24h】

Assembly-level analyses of accident-tolerant cladding concepts for a long-life civil marine SMR core using micro-heterogeneous duplex fuel

机译:使用微非均相双燃料对长寿命民用海洋SMR堆芯的事故容忍包层概念进行装配级分析

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In this reactor physics study, we examine the neutronic performance of accident-tolerant fuel (ATF) claddings – austenitic type 310 stainless steel (310SS), ferritic Fe-20Cr-5Al (FeCrAl), advanced powder metallurgic ferritic (APMT), and silicon carbide (SiC)-based materials – as alternative cladding materials compared with Zircaloy-4 (Zr) cladding. The cores considered use 18%235U enriched micro-heterogeneous ThO2-UO2duplex fuel and, for purposes of comparison, 15%235U enriched homogeneously mixed all-UO2fuel, loaded into 13×13 pin arrays. A constant cladding coating thickness of 655 μm is assumed. We use the WIMS reactor physics code to analyse the associated reactivity, achievable discharge burnup, spectral variations, rim effect and reactivity feedback parameters for the candidate cladding materials at the assembly level.The results show that candidate fuels with 310SS cladding exhibit a∼13% discharge burnup penalty compared to Zr due to the presence of a very high nickel (Ni) concentration. The high neutron absorption cross-sections of iron (Fe) in the FeCrAl and APMT claddings also lead to a∼10% discharge burnup penalty. The fuels with SiC cladding can achieve a∼1% higher discharge burnup compared to Zr due to the low thermal neutron absorption cross-sections of its constituents and the softer neutron spectrum. The claddings with lower capture cross-sections (SiC and Zr) exhibit higher relative fission power at the pellet periphery. For both candidate fuels, the end-of-life239Pu (for UO2fuel) and233U (for duplex fuel) inventories are higher for the claddings (Fe-based: FeCrAl, APMT and steel-based: 310SS) with higher thermal capture cross-sections, unlike for SiC and Zr, where SiC provides higher end-of-life239Pu and233U inventories despite having lower capture cross-section than that of the Zr. Reactivity feedback parameter values (moderator and fuel temperature coefficients) are more negative for the duplex fuel than the UO2fuel for all the candidate claddings, with claddings with harder spectra exhibiting more negative values. The duplex fuel yields a softer spectrum than the UO2fuel with the candidate claddings, which improves neutron economy and thus discharge burnup.
机译:在此反应堆物理研究中,我们研究耐事故燃料(ATF)包层的中子性能-奥氏体310型不锈钢(310SS),铁素体Fe-20Cr-5Al(FeCrAl),高级粉末冶金铁素体(APMT)和硅碳化物(SiC)基材料–与Zircaloy-4(Zr)覆层相比,可作为替代覆层材料。考虑的堆芯使用富含18%235U的微非均相ThO2-UO2双相燃料,并且为了进行比较,将15%235U富含均质混合的全UO2燃料装入13×13针阵列中。假设恒定的覆层涂层厚度为655μm。我们使用WIMS反应堆物理代码分析了组装层上候选包层材料的相关反应性,可实现的放电燃耗,光谱变化,边缘效应和反应性反馈参数,结果表明,具有310SS包层的候选燃料表现出约13%由于存在非常高的镍(Ni)浓度,与Zr相比放电放电消耗增加。 FeCrAl和APMT包层中铁(Fe)的高中子吸收截面也会导致约10%的放电燃耗损失。与Zr相比,具有SiC包层的燃料可实现约1%的放电燃尽,这是因为其成分的热中子吸收截面小且中子光谱较软。具有较低捕获截面(SiC和Zr)的包层在颗粒周围具有较高的相对裂变能力。对于这两种候选燃料,覆层(铁基:FeCrAl,APMT和钢基:310SS)的239Pu(用于UO2燃料)和233U(用于双相燃料)的库存均较高,与SiC和Zr不同的是,尽管SiC的捕获截面积比Zr的捕获截面积小,但SiC提供的239Pu和233U寿命终了库存。对于所有候选包层,双相燃料的反应性反馈参数值(调节剂和燃料温度系数)比UO2燃料的负值更大,具有较硬光谱的包层显示出更多的负值。双相燃料的光谱比带有候选包层的UO2燃料的光谱更柔和,从而改善了中子经济性,并因此改善了燃耗。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号