首页> 外文期刊>Neurocomputing >A review of irregular time series data handling with gated recurrent neural networks
【24h】

A review of irregular time series data handling with gated recurrent neural networks

机译:与门控复发性神经网络相对时间序列数据处理的综述

获取原文
获取原文并翻译 | 示例
           

摘要

Irregular time series data is becoming increasingly prevalent with the growth of multi-sensor systems as well as the continued use of unstructured manual data recording mechanisms. Irregular data and the resulting missing values severely limit the data & rsquo;s ability to be analysed and modelled for classification and forecasting tasks. Often, conventional methods used for handling time series data introduce bias and make strong assumptions on the underlying data generation process, which can lead to poor model predictions. Traditional machine learning and deep learning methods, although at the forefront of data modelling, are at best compromised by irregular time series data sets and fail to model the temporal irregularity of incomplete time series. Gated recurrent neural networks (RNN), such as LSTM and GRU, have had outstanding success in sequential modelling, and have been applied in many application fields, including natural language processing. These models have become an obvious choice for time series modelling and a promising tool for handling irregular time series data. RNNs have a unique ability to be adapted to make effective use of missing value patterns, time intervals and complex temporal dependencies in irregular univariate and multivariate time series data. In this paper, we provide a systematic review of recent studies in which gated recurrent neural networks have been successfully applied to irregular time series data for prediction tasks within several fields, including medical, human activity recognition, traffic monitoring and environmental monitoring. The review highlights the two common approaches for handling irregular time series data: missing value imputation at the data preprocessing stage and modification of algorithms to directly handle missing values in the learning process. Reviewed models are confined to those that can address issues with irregular time series data and does not cover the broader range of models that deal more generally with sequences and regular time series. This paper aims to present the most effective techniques emerging within this branch of research as well as to identify remaining challenges, so that researchers may build upon this platform of work towards further novel techniques for handling irregular time series data.& nbsp; (c) 2021 Elsevier B.V. All rights reserved.
机译:随着多传感器系统的增长以及非结构化手动数据记录机制的继续使用,不规则时间序列数据变得越来越普遍。不规则数据和产生的缺失值严重限制了数据和rsquo; s的分析能力和建模的分类和预测任务。通常,用于处理时间序列数据的常规方法引入偏差并对底层数据生成过程产生强烈的假设,这可能导致模型预测不良。传统的机器学习和深度学习方法,尽管处于数据建模的最前沿,但是由不规则时间序列数据集最佳地妥协,并且无法模拟不完全时间序列的时间不规则性。门控经常性神经网络(RNN),如LSTM和GRU,在顺序建模中具有出色的成功,并且已应用于许多应用领域,包括自然语言处理。这些模型已成为时间序列建模的明显选择以及用于处理不规则时间序列数据的有希望的工具。 RNN具有适于在不规则的单变量和多变量时间序列数据中有效地利用缺失的值模式,时间间隔和复杂的时间依赖性的独特能力。在本文中,我们对最近的研究提供了系统审查,其中已经成功地应用于几个领域内预测任务的不规则时间序列数据,包括医疗,人类活动识别,交通监测和环境监测。此次审查强调了处理不规则时间序列数据的两个常见方法:缺少数据预处理阶段的值归纳,并修改算法,直接处理学习过程中的缺失值。综述模型仅限于可以解决不规则时间序列数据的问题的模型,并且不会覆盖更广泛的型号,这些模型更加符合序列和常规时间序列。本文旨在展示该研究分支中出现的最有效的技术,以及识别剩余的挑战,以便研究人员可以在这个用于处理不规则时间序列数据的进一步新颖技术的工人平台上。  (c)2021 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号