首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Accelerated Canonical Polyadic Decomposition Using Mode Reduction
【24h】

Accelerated Canonical Polyadic Decomposition Using Mode Reduction

机译:使用模式缩减加速规范多态分解

获取原文
获取原文并翻译 | 示例
           

摘要

CANonical polyadic DECOMPosition (CANDECOMP, CPD), also known as PARAllel FACtor analysis (PARAFAC) is widely applied to $N$th-order $(Ngeq 3)$ tensor analysis. Existing CPD methods mainly use alternating least squares iterations and hence need to unfold tensors to each of their $N$ modes frequently, which is one major performance bottleneck for large-scale data, especially when the order $N$ is large. To overcome this problem, in this paper, we propose a new CPD method in which the CPD of a high-order tensor (i.e., $N>3$) is realized by applying CPD to a mode reduced one (typically, third-order tensor) followed by a Khatri–Rao product projection procedure. This way is not only quite efficient as frequently unfolding to $N$ modes is avoided, but also promising to conquer the bottleneck problem caused by high collinearity of components. We show that, under mild conditions, any $N$th-order CPD can be converted to an equivalent third-order one but without destroying essential uniqueness, and theoretically they simply give consistent results. Besides, once the CPD of any unfolded lower order tensor is essentially unique, it is also true for the CPD of the original higher order tensor. Error bounds of truncated CPD are also analyzed in the presence of noise. Simulations show that, compared with state-of-the-art CPD methods, the proposed method is more efficient and is able to escape from local solutions more easily.
机译:典型的双元DECOMPosition(CANDECOMP,CPD),也称为PARAllel FACtor分析(PARAFAC),广泛应用于$ N $阶$(Ngeq 3)$张量分析。现有的CPD方法主要使用交替最小二乘迭代,因此需要将张量频繁地扩展到它们的每个$ N $模式,这是大规模数据的主要性能瓶颈,尤其是在阶次$ N $大的情况下。为了克服这个问题,在本文中,我们提出了一种新的CPD方法,其中通过将CPD应用于简化的模式(通常是三阶)来实现高阶张量的CPD(即$ N> 3 $)。张量),然后进行Khatri-Rao乘积投影过程。这种方法不仅非常有效,因为可以避免频繁地展开为$ N $模式,而且有望克服由组件的高共线性导致的瓶颈问题。我们显示,在温和的条件下,任何$ N $阶CPD都可以转换为等效的三阶CPD,但不会破坏本质唯一性,并且从理论上讲,它们只会给出一致的结果。此外,一旦任何展开的低阶张量的CPD本质上是唯一的,则原始高阶张量的CPD也是如此。截短的CPD的误差范围也会在存在噪声的情况下进行分析。仿真表明,与最新的CPD方法相比,所提出的方法效率更高,并且能够更轻松地摆脱本地解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号