首页> 外文期刊>Neural computation >Nonparametric Modeling of Neural Point Processes via Stochastic Gradient Boosting Regression
【24h】

Nonparametric Modeling of Neural Point Processes via Stochastic Gradient Boosting Regression

机译:基于随机梯度提升回归的神经点过程非参数建模

获取原文
获取原文并翻译 | 示例
           

摘要

Statistical nonparametric modeling tools that enable the discovery and approximation of functional forms (e.g., tuning functions) relating neural spiking activity to relevant covariates are desirable tools in neu-roscience. In this article, we show how stochastic gradient boosting regression can be successfully extended to the modeling of spiking activity data while preserving their point process nature, thus providing a robust nonparametric modeling tool. We formulate stochastic gradient boosting in terms of approximating the conditional intensity function of a point process in discrete time and use the standard likelihood of the process to derive the loss function for the approximation problem. To illustrate the approach, we apply the algorithm to the modeling of primary motor and parietal spiking activity as a function of spiking history and kinematics during a two-dimensional reaching task. Model selection, goodness of fit via the time rescaling theorem, model interpretation via partial dependence plots, ranking of covariates according to their relative importance, and prediction of peri-event time histograms are illustrated and discussed. Additionally, we use the tenfold cross-validated log likelihood of the modeled neural processes (67 cells) to compare the performance of gradient boosting regression to two alternative approaches: standard generalized linear models (GLMs) and Bayesian P-splines with Markov chain Monte Carlo (MCMC) sampling. In our data set, gradient boosting outperformed both Bayesian P-splines (in approximately 90% of the cells) and GL'Ms (100%). Because of its good performance and computational efficiency, we propose stochastic gradient boosting regression as an off-the-shelf nonparametric tool for initial analyses of large neural data sets (e.g., more than 50 cells; more than 10~5 samples per cell) with corresponding multidimensional covariate spaces (e.g., more than four covariates). In the cases where a functional form might be amenable to a more compact representation, gradient boosting might also lead to the discovery of simpler, parametric models.
机译:能够发现和逼近将神经尖峰活动与相关协变量相关的功能形式(例如调整功能)的统计非参数建模工具是神经科学中理想的工具。在本文中,我们展示了如何将随机梯度增强回归成功地扩展到尖峰活动数据的建模,同时保留它们的点过程性质,从而提供一个可靠的非参数建模工具。我们用离散时间近似点过程的条件强度函数的方式来表示随机梯度提升,并使用过程的标准似然性来推导近似问题的损失函数。为了说明该方法,我们将算法应用于二维运动任务期间主要运动和顶峰活动的建模,作为峰值历史和运动学的函数。图示和讨论了模型选择,通过时间重定理的拟合优度,通过部分依赖图的模型解释,根据变量的相对重要性对协变量进行排名以及事件周围时间直方图的预测。此外,我们使用建模的神经过程(67个细胞)的十倍交叉验证对数可能性,将梯度增强回归的性能与两种备选方法进行比较:标准广义线性模型(GLM)和具有马尔可夫链蒙特卡洛的贝叶斯P样条(MCMC)采样。在我们的数据集中,梯度增强的效果优于贝叶斯P样条曲线(大约90%的单元)和GL'Ms(100%)。由于其良好的性能和计算效率,我们建议使用随机梯度提升回归作为现成的非参数工具来对大型神经数据集(例如,超过50个单元格;每个单元格超过10〜5个样本)进行初始分析,对应的多维协变量空间(例如,四个以上协变量)。在功能形式可能适合更紧凑的表示的情况下,梯度增强可能还会导致发现更简单的参数模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号