...
首页> 外文期刊>Nature >Thermally induced ultrasonic emission from porous silicon
【24h】

Thermally induced ultrasonic emission from porous silicon

机译:多孔硅的热诱导超声发射

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The most common mechanism for generating ultrasound in air is via a piezoelectric transducer, whereby an electrical signal is converted directly into a mechanical vibration. But the acoustic pressure so generated is usually limited to less than 10 Pa, the frequency bandwidth of most piezoelectric ceramics is narrow, and it is difficult to assemble such transducers into a fine-scale phase array with no crosstalk. An alternative strategy using micromachined electrostatic diaphragms is showing some promise, but the high voltages required and the mechanical weakness of the diaphragms may prove problematic for applications. Here we show that simple heat conduction from porous silicon to air results in high-intensity ultrasound without the need for any mechanical vibrational system. Our non-optimized device generates an acoustic pressure of 0.1 Pa at a power consumption of 1 W cm~(-2), and exhibits a flat frequency response up to at least 100 kHz. We expect that substantial improvements in efficiency should be possible. Moreover, as this material lends itself to integration with conventional electronic circuitry, it should be relatively straightforward to develop finely structured phase arrays of these devices, which would give control over the wavefront of the acoustic emissions.
机译:在空气中产生超声波的最常见机制是通过压电换能器,从而将电信号直接转换为机械振动。但是,这样产生的声压通常被限制为小于10 Pa,大多数压电陶瓷的频率带宽很窄,并且很难将这种换能器组装成没有串扰的小规模相控阵。使用微加工静电膜片的另一种策略显示了一些希望,但是膜片所需的高电压和机械强度可能对应用造成问题。在这里,我们表明,从多孔硅到空气的简单热传导会导致高强度超声,而无需任何机械振动系统。我们的非优化设备在1 W cm〜(-2)的功耗下产生0.1 Pa的声压,并且在至少100 kHz的频率范围内表现出平坦的频率响应。我们希望效率有可能大幅度提高。此外,由于这种材料适合与常规电子电路集成,因此开发这些设备的精细结构的相阵列应该相对简单,这将对声发射的波前进行控制。

著录项

  • 来源
    《Nature》 |1999年第6747期|p.853-855|共3页
  • 作者单位
  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 自然科学总论;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号