首页> 外文期刊>Nature >Observing the emergence of a quantum phase transition shell by shell
【24h】

Observing the emergence of a quantum phase transition shell by shell

机译:壳体观察量子阶段过渡壳的出现

获取原文
获取原文并翻译 | 示例
       

摘要

Many-body physics describes phenomena that cannot be understood by looking only at the constituents of a system(1). Striking examples are broken symmetry, phase transitions and collective excitations(2). To understand how such collective behaviour emerges as a system is gradually assembled from individual particles has been a goal in atomic, nuclear and solid-state physics for decades(3-6). Here we observe the few-body precursor of a quantum phase transition from a normal to a superfluid phase. The transition is signalled by the softening of the mode associated with amplitude vibrations of the order parameter, usually referred to as a Higgs mode(7). We achieve fine control over ultracold fermions confined to two-dimensional harmonic potentials and prepare closed-shell configurations of 2, 6 and 12 fermionic atoms in the ground state with high fidelity. Spectroscopy is then performed on our mesoscopic system while tuning the pair energy from zero to a value larger than the shell spacing. Using full atom counting statistics, we find the lowest resonance to consist of coherently excited pairs only. The distinct non-monotonic interaction dependence of this many-body excitation, combined with comparison with numerical calculations allows us to identify it as the precursor of the Higgs mode. Our atomic simulator provides a way to study the emergence of collective phenomena and the thermodynamic limit, particle by particle.
机译:许多身体物理学描述了通过仅查找系统的组分(1)来理解的现象。引人注目的例子是破裂的对称性,相变和集体激励(2)。要了解这些集体行为如何出现,因为系统逐渐从个体颗粒组装成了几十年(3-6)的原子,核和固态物理学的目标。在这里,我们观察到量子相转变的几体前体从正常到超流相阶段。通过与订单参数的幅度振动相关联的模式的软化来发信号通知转换,通常称为HIGGS模式(7)。我们通过高保真度实现了超薄谐波电位的较纯粹尺寸谐波电位的微量控制,并准备了2,6和12个Fermionic原子的闭合壳配置。然后在我们的介面系统上执行光谱,同时从零调谐对一对能量到大于壳间距的值。使用完整的Atom计数统计数据,我们发现仅由连贯兴奋的对组成的谐振。与数值计算的比较结合这种许多身体激发的不同的非单调相互作用依赖性允许我们将其识别为HIGGS模式的前体。我们的原子模拟器提供了一种研究集体现象的出现和热力学极限,颗粒的出现方法。

著录项

  • 来源
    《Nature》 |2020年第7835期|583-587|共5页
  • 作者单位

    Heidelberg Univ Phys Inst Heidelberg Germany;

    Heidelberg Univ Phys Inst Heidelberg Germany;

    Heidelberg Univ Phys Inst Heidelberg Germany;

    Heidelberg Univ Phys Inst Heidelberg Germany;

    Lund Univ LTH Math Phys & NanoLund Lund Sweden|Univ Copenhagen Niels Bohr Inst Copenhagen Denmark|Univ Southern Calif Dept Phys & Astron Los Angeles CA 90007 USA;

    Lund Univ LTH Math Phys & NanoLund Lund Sweden;

    Aarhus Univ Dept Phys & Astron Ctr Complex Quantum Syst Aarhus Denmark|Southern Univ Sci & Technol Shenzhen Inst Quantum Sci & Engn Shenzhen Peoples R China|Southern Univ Sci & Technol Dept Phys Shenzhen Peoples R China;

    Heidelberg Univ Phys Inst Heidelberg Germany;

    Heidelberg Univ Phys Inst Heidelberg Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 22:15:35

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号