...
首页> 外文期刊>Nature >Anatomy of cage formation in a two-dimensional glass-forming liquid
【24h】

Anatomy of cage formation in a two-dimensional glass-forming liquid

机译:二维玻璃形成液中笼形成的解剖学

获取原文
获取原文并翻译 | 示例

摘要

As a glass-forming liquid is cooled, the dynamics of its constituent particles changes from being liquid-like to more solid-like. The solidity of the resulting glassy material is believed to be due to a cage-formation process, whereby the motion of individual particles is increasingly constrained by neighbouring particles. This process begins at the temperature (or particle density) at which the glass-forming liquid first shows signs of glassy dynamics; however, the details of how the cages form remain unclear(1-4). Here we study cage formation at the particle level in a two-dimensional colloidal suspension (a glass-forming liquid). We use focused lasers to perturb the suspension at the particle level and monitor the nonlinear dynamic response of the system using video microscopy. All observables that we consider respond non-monotonically as a function of the particle density, peaking at the density at which glassy dynamics is first observed. We identify this maximum response as being due to cage formation, quantified by the appearance of domains in which particles move in a cooperative manner. As the particle density increases further, these local domains become increasingly rigid and dominate the macroscale particle dynamics. This microscale rheological deformation approach demonstrates that cage formation in glass-forming liquids is directly related to the merging of such domains, and reveals the first step in the transformation of liquids to glassy materials(1,5).The onset of rigidity in a two-dimensional colloidal glass-forming system is identified by the formation and merging of locally rigid domains in which particles move in a cooperative manner.
机译:作为玻璃形成液体冷却,其组成颗粒的动态从液体状变化到更固体的液体。被认为是由于笼形成过程的稳定性,从而通过相邻颗粒越来越受到各个颗粒的运动。该过程始于玻璃形成液首先显示玻璃动态的迹象的温度(或颗粒密度)。但是,笼子形式如何仍然不清楚(1-4)细节。在这里,我们研究了二维胶体悬浮液(玻璃形成液)的颗粒水平的笼形成。我们使用聚焦激光器在粒子水平处扰乱悬架,并使用视频显微镜监测系统的非线性动态响应。我们认为我们认为作为颗粒密度的函数的所有可观察者,以颗粒密度的函数,首先观察到玻璃状动力学的密度达到峰值。我们将这种最大响应识别为由于笼形成,通过粒子以合作方式移动的结构域的出现量化。随着粒子密度进一步增加,这些局部结构域变得越来越严格并主导宏观粒子动态。这种微观流变变形方法表明,玻璃形成液体中的笼形成与这种结构域的合并直接相关,并揭示液体转化为玻璃材料(1.5)的第一步。两个刚度的发作通过形成和合并局部刚性结构域的形成和合并,其中粒子以协作方式移动。

著录项

  • 来源
    《Nature 》 |2020年第7833期| 225-229| 共5页
  • 作者单位

    Inst Basic Sci Ctr Soft & Living Matter Ulsan South Korea;

    Inst Basic Sci Ctr Soft & Living Matter Ulsan South Korea;

    Univ Montpellier CNRS Lab Charles Coulomb Montpellier France|Inst Univ France Paris France;

    Inst Basic Sci Ctr Soft & Living Matter Ulsan South Korea|Ulsan Natl Inst Sci & Technol Dept Chem Ulsan South Korea|Ulsan Natl Inst Sci & Technol Dept Phys Ulsan South Korea;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号