首页> 外文期刊>Nature >A fabrication process for flexible single-crystal perovskite devices
【24h】

A fabrication process for flexible single-crystal perovskite devices

机译:柔性单晶钙钛矿器件的制造工艺

获取原文
获取原文并翻译 | 示例
       

摘要

A solution-based lithography-assisted epitaxial-growth-and-transfer method is used to fabricate single-crystal hybrid perovskites on any surface, with precise control of the thickness, area and chemical composition gradient.Organic-inorganic hybrid perovskites have electronic and optoelectronic properties that make them appealing in many device applications(1-4). Although many approaches focus on polycrystalline materials(5-7), single-crystal hybrid perovskites show improved carrier transport and enhanced stability over their polycrystalline counterparts, due to their orientation-dependent transport behaviour(8-10)and lower defect concentrations(11,12). However, the fabrication of single-crystal hybrid perovskites, and controlling their morphology and composition, are challenging(12). Here we report a solution-based lithography-assisted epitaxial-growth-and-transfer method for fabricating single-crystal hybrid perovskites on arbitrary substrates, with precise control of their thickness (from about 600 nanometres to about 100 micrometres), area (continuous thin films up to about 5.5 centimetres by 5.5 centimetres), and composition gradient in the thickness direction (for example, from methylammonium lead iodide, MAPbI(3), to MAPb(0.5)Sn(0.5)I(3)). The transferred single-crystal hybrid perovskites are of comparable quality to those directly grown on epitaxial substrates, and are mechanically flexible depending on the thickness. Lead-tin gradient alloying allows the formation of a graded electronic bandgap, which increases the carrier mobility and impedes carrier recombination. Devices based on these single-crystal hybrid perovskites show not only high stability against various degradation factors but also good performance (for example, solar cells based on lead-tin-gradient structures with an average efficiency of 18.77 per cent).
机译:基于溶液的光刻辅助外延 - 生长和转移方法用于在任何表面上制造单晶杂交钙锌矿,精确控制厚度,面积和化学成分梯度。有机 - 无机杂交钙耐力具有电子和光电使它们在许多设备应用程序中吸引人的属性(1-4)。虽然许多方法专注于多晶体材料(5-7),但由于其取向依赖性运输行为(8-10)和较低的缺陷浓度(11,1),单晶杂交钙酯显示出改善的载体传输和增强的多晶对应物的稳定性。 12)。然而,制备单晶杂交钙酸盐,并控制它们的形态和组成,是具有挑战性的(12)。在这里,我们报告了一种基于解决方案的光刻辅助外延 - 生长和转移方法,用于在任意基材上制造单晶杂交钙酸盐,精确控制它们的厚度(约600纳米至约100微米),区域(连续薄薄膜高达约5.5厘米5.5厘米),以及在厚度方向上的组成梯度(例如,从甲基铅碘化物,MAPBI(3),至MAPB(0.5)Sn(0.5)I(3))。转移的单晶杂交钙锌矿与在外延基板上直接生长的那些具有相当的质量,并且根据厚度是机械柔性的。铅锡梯度合金化允许形成渐变的电子带隙,其增加了载流子迁移率并阻碍了载体重组。基于这些单晶杂交植物的装置不仅显示出对各种降解因素的高稳定性,而且表现出良好的性能(例如,太阳能电池基于铅锡结构,平均效率为18.77%)。

著录项

  • 来源
    《Nature》 |2020年第7818期|790-795|共6页
  • 作者单位

    Univ Calif San Diego Dept Nanoengn La Jolla CA 92093 USA;

    Univ Calif San Diego Dept Nanoengn La Jolla CA 92093 USA;

    Univ Calif San Diego Dept Nanoengn La Jolla CA 92093 USA;

    Univ Calif San Diego Dept Nanoengn La Jolla CA 92093 USA;

    Univ Calif San Diego Dept Nanoengn La Jolla CA 92093 USA;

    Texas A&M Univ Dept Mech Engn College Stn TX 77843 USA;

    Univ Calif San Diego Mat Sci & Engn Program La Jolla CA 92093 USA;

    Los Alamos Natl Lab Los Alamos NM USA;

    Univ Calif San Diego Dept Elect & Comp Engn La Jolla CA 92093 USA;

    Univ Calif San Diego Mat Sci & Engn Program La Jolla CA 92093 USA;

    Univ Calif San Diego Dept Nanoengn La Jolla CA 92093 USA;

    Univ Calif San Diego Mat Sci & Engn Program La Jolla CA 92093 USA;

    Tsinghua Univ Dept Phys Beijing Peoples R China;

    Shenzhen Univ Coll Phys & Optoelect Engn Shenzhen Guangdong Peoples R China;

    Univ Calif San Diego Dept Nanoengn La Jolla CA 92093 USA;

    Univ Calif San Diego Dept Nanoengn La Jolla CA 92093 USA;

    Univ Calif San Diego Dept Nanoengn La Jolla CA 92093 USA;

    Univ Calif San Diego Mat Sci & Engn Program La Jolla CA 92093 USA;

    Univ Calif San Diego Dept Nanoengn La Jolla CA 92093 USA;

    Univ Calif San Diego Dept Nanoengn La Jolla CA 92093 USA;

    Univ Calif San Diego Dept Nanoengn La Jolla CA 92093 USA|Univ Calif San Diego Mat Sci & Engn Program La Jolla CA 92093 USA|Univ Calif San Diego Dept Elect & Comp Engn La Jolla CA 92093 USA;

    Texas A&M Univ Dept Mech Engn College Stn TX 77843 USA;

    Univ Calif San Diego Dept Nanoengn La Jolla CA 92093 USA;

    Univ Calif San Diego Mat Sci & Engn Program La Jolla CA 92093 USA|Univ Calif San Diego Dept Elect & Comp Engn La Jolla CA 92093 USA;

    Univ Calif San Diego Dept Nanoengn La Jolla CA 92093 USA|Univ Calif San Diego Mat Sci & Engn Program La Jolla CA 92093 USA;

    Univ Calif San Diego Dept Nanoengn La Jolla CA 92093 USA;

    Los Alamos Natl Lab Los Alamos NM USA;

    Los Alamos Natl Lab Los Alamos NM USA;

    Univ Calif San Diego Dept Nanoengn La Jolla CA 92093 USA|Univ Calif San Diego Mat Sci & Engn Program La Jolla CA 92093 USA|Univ Calif San Diego Dept Elect & Comp Engn La Jolla CA 92093 USA|Univ Calif San Diego Dept Bioengn La Jolla CA 92093 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 22:15:28

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号