首页> 外文期刊>Nature >Sodium regulates clock time and output via an excitatory GABAergic pathway
【24h】

Sodium regulates clock time and output via an excitatory GABAergic pathway

机译:钠通过兴奋性Gabaeric途径调节时钟时间和输出

获取原文
获取原文并翻译 | 示例
           

摘要

The suprachiasmatic nucleus (SCN) serves as the body's master circadian clock that adaptively coordinates changes in physiology and behaviour in anticipation of changing requirements throughout the 24-h day-night cycle(1-4). For example, the SCN opposes overnight adipsia by driving water intake before sleep(5,6), and by driving the secretion of anti-diuretic hormone(7,8) and lowering body temperature(9,10) to reduce water loss during sleep(11). These responses can also be driven by central osmo-sodium sensors to oppose an unscheduled rise in osmolality during the active phase(12-16). However, it is unknown whether osmo-sodium sensors require clock-output networks to drive homeostatic responses. Here we show that a systemic salt injection (hypertonic saline) given at Zeitgeber time 19-a time at which SCNVP (vasopressin) neurons are inactive-excited SCNVP neurons and decreased non-shivering thermogenesis (NST) and body temperature. The effects of hypertonic saline on NST and body temperature were prevented by chemogenetic inhibition of SCNVP neurons and mimicked by optogenetic stimulation of SCNVP neurons in vivo. Combined anatomical and electrophysiological experiments revealed that osmo-sodium-sensing organum vasculosum lamina terminalis (OVLT) neurons expressing glutamic acid decarboxylase (OVLTGAD) relay this information to SCNVP neurons via an excitatory effect of gamma-aminobutyric acid (GABA). Optogenetic activation of OVLTGAD neuron axon terminals excited SCNVP neurons in vitro and mimicked the effects of hypertonic saline on NST and body temperature in vivo. Furthermore, chemogenetic inhibition of OVLTGAD neurons blunted the effects of systemic hypertonic saline on NST and body temperature. Finally, we show that hypertonic saline significantly phase-advanced the circadian locomotor activity onset of mice. This effect was mimicked by optogenetic activation of the OVLTGAD - SCNVP pathway and was prevented by chemogenetic inhibition of OVLTGAD neurons. Collectively, our findings provide demonstration that clock time can be regulated by non-photic physiologically relevant cues, and that such cues can drive unscheduled homeostatic responses via clock-output networks.
机译:Supachiasmatic Nucleus(SCN)用作身体的主昼夜节奏时钟,可自适应地协调生理学和行为的变化,以期预期在整个24小时夜间周期(1-4)中的不断变化的要求。例如,SCN通过在睡眠前(5,6)前驾驶水摄入量,并通过驱动抗利尿激素(7,8)的分泌并降低体温(9,10)来减少睡眠期间减少水损失(11)。这些反应也可以由中央渗透钠传感器驱动,以在活性相(12-16)期间反对渗透性的未划伤升高。然而,奥斯莫 - 钠传感器是否需要钟表输出网络来驱动稳态反应。在这里,我们显示在Zeitgeber时间19-A的系统盐注射(高渗盐水) - SCNVP(瓦向量素)神经元是无活性激发的SCNVP神经元并降低非颤动的热生成(NST)和体温。通过对ScNVP神经元的化学抑制来防止高渗盐水对NST和体温的影响,通过体内SCNVP神经元的致敏刺激模拟。结合解剖学和电生理学实验表明,表达谷氨酸脱羧酶(OVLT)​​神经元的Osmo-钠感应器官血管层(OVLT)​​神经元通过γ-氨基丁酸(GABA)的兴奋作用将该信息中继到SCNVP神经元。 Opltgad神经元轴突终端的致敏活化在体外激发SCNVP神经元,并模仿高渗盐水对体内NST和体温的影响。此外,Ovltgad神经元的化学抑制钝化了全身高渗盐水对NST和体温的影响。最后,我们表明高渗盐水显着相位高级小鼠的昼夜活动活动。通过OVLTGAD - > SCNVP途径的致敏活化来模拟这种效果,并通过EVLTGAD神经元的化学抑制来防止。统称,我们的研究结果提供了表明,时钟时间可以由非光学生理相关的提示调节,并且这种提示可以通过时钟 - 输出网络推动出不定期的稳态响应。

著录项

  • 来源
    《Nature》 |2020年第7816期|421-424|共4页
  • 作者单位

    McGill Univ Res Inst Brain Repair & Integrat Neurosci Program Hlth Ctr Montreal PQ Canada;

    McGill Univ Res Inst Brain Repair & Integrat Neurosci Program Hlth Ctr Montreal PQ Canada;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号