首页> 外文期刊>Nature >A subradiant optical mirror formed by a single structured atomic layer
【24h】

A subradiant optical mirror formed by a single structured atomic layer

机译:由单个结构化原子层形成的亚辐射光学镜

获取原文
获取原文并翻译 | 示例
           

摘要

Versatile interfaces with strong and tunable light-matter interactions are essential for quantum science(1)because they enable mapping of quantum properties between light and matter(1). Recent studies(2-10)have proposed a method of controlling light-matter interactions using the rich interplay of photon-mediated dipole-dipole interactions in structured subwavelength arrays of quantum emitters. However, a key aspect of this approach-the cooperative enhancement of the light-matter coupling strength and the directional mirror reflection of the incoming light using an array of quantum emitters-has not yet been experimentally demonstrated. Here we report the direct observation of the cooperative subradiant response of a two-dimensional square array of atoms in an optical lattice. We observe a spectral narrowing of the collective atomic response well below the quantum-limited decay of individual atoms into free space. Through spatially resolved spectroscopic measurements, we show that the array acts as an efficient mirror formed by a single monolayer of a few hundred atoms. By tuning the atom density in the array and changing the ordering of the particles, we are able to control the cooperative response of the array and elucidate the effect of the interplay of spatial order and dipolar interactions on the collective properties of the ensemble. Bloch oscillations of the atoms outside the array enable us to dynamically control the reflectivity of the atomic mirror. Our work demonstrates efficient optical metamaterial engineering based on structured ensembles of atoms(4,8,9)and paves the way towards controlling many-body physics with light(5,6,11)and light-matter interfaces at the single-quantum level(7,10).A single two-dimensional array of atoms trapped in an optical lattice shows a tunable cooperative subradiant optical response, acting as a single-monolayer optical mirror with controllable reflectivity.
机译:具有强大和可调光物质相互作用的多功能接口对于量子科学(1)至关重要,因为它们能够在光线和物质(1)之间的量子特性映射。最近的研究(2-10)提出了一种使用光子介导的偶极 - 偶极 - 偶极相互作用的富含光子介导的倍数阵列的富量子发射器的富孔相互作用来控制光物质相互作用的方法。然而,这种方法的关键方面 - 使用量子发射器阵列的光物质耦合强度和进入光的方向镜面反射的协同增强 - 尚未经过实验证明。在这里,我们报告了在光学晶格中的二维方形阵列的协同亚辐射响应的直接观察。我们观察集体原子反应的光谱缩小,低于单个原子的量子限制衰减进入自由空间。通过空间分辨的光谱测量,我们表明阵列充当由几百个原子的单层形成的有效镜子。通过调整阵列中的原子密度并改变粒子的排序,我们能够控制阵列的协同响应,并阐明空间阶和偶极相互作用对集合的集体特性的影响。阵列外部的原子的Bloch振荡使我们能够动态控制原子镜的反射率。我们的工作证明了基于原子的结构化合奏(4,8,9)的高效光学超材料工程,并在单量子水平下铺平了控制许多身体物理学和光物质界面的许多物理(7,10)。捕获在光学晶格中的单个二维原子阵列示出了可调谐的协作亚辐射光学响应,其用作具有可控反射率的单层光学镜。

著录项

  • 来源
    《Nature》 |2020年第7816期|369-374|共6页
  • 作者单位

    Institut Quantenopt Planck Garching Germany|Munich Ctr Quantum Sci Technology MCQST Munich Germany;

    Institut Quantenopt Planck Garching Germany|Munich Ctr Quantum Sci Technology MCQST Munich Germany;

    Institut Quantenopt Planck Garching Germany|Munich Ctr Quantum Sci Technology MCQST Munich Germany;

    Institut Quantenopt Planck Garching Germany|Munich Ctr Quantum Sci Technology MCQST Munich Germany;

    Univ Calif Dept Phys Berkeley CA USA;

    Univ Calif Dept Phys Berkeley CA USA;

    Institut Quantenopt Planck Garching Germany|Munich Ctr Quantum Sci Technology MCQST Munich Germany|Physikal Institut Eberhard Karls Univers Tubingen Tubingen Germany;

    Institut Quantenopt Planck Garching Germany|Munich Ctr Quantum Sci Technology MCQST Munich Germany|Fak Phys Ludwig Maximilians Univers Munich Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号