首页> 外文期刊>Nature >A metabolic pathway for bile acid dehydroxylation by the gut microbiome
【24h】

A metabolic pathway for bile acid dehydroxylation by the gut microbiome

机译:肠道微生物组的胆汁酸脱羟基化的代谢途径

获取原文
获取原文并翻译 | 示例
       

摘要

Abstract The gut microbiota synthesize hundreds of molecules, many of which influence host physiology. Among the most abundant metabolites are the secondary bile acids deoxycholic acid (DCA) and lithocholic acid (LCA), which accumulate at concentrations of around 500 μM and are known to block the growth of Clostridium difficile1, promote hepatocellular carcinoma2 and modulate host metabolism via the G-protein-coupled receptor TGR5 (ref. 3). More broadly, DCA, LCA and their derivatives are major components of the recirculating pool of bile acids4; the size and composition of this pool are a target of therapies for primary biliary cholangitis and nonalcoholic steatohepatitis. Nonetheless, despite the clear impact of DCA and LCA on host physiology, an incomplete knowledge of their biosynthetic genes and a lack of genetic tools to enable modification of their native microbial producers limit our ability to modulate secondary bile acid levels in the host. Here we complete the pathway to DCA and LCA by assigning and characterizing enzymes for each of the steps in its reductive arm, revealing a strategy in which the A–B rings of the steroid core are transiently converted into an electron acceptor for two reductive steps carried out by Fe–S flavoenzymes. Using anaerobic in vitro reconstitution, we establish that a set of six enzymes is necessary and sufficient for the eight-step conversion of cholic acid to DCA. We then engineer the pathway into Clostridium sporogenes, conferring production of DCA and LCA on a nonproducing commensal and demonstrating that a microbiome-derived pathway can be expressed and controlled heterologously. These data establish a complete pathway to two central components of the bile acid pool.
机译:摘要肠道微生物酵母合成了数百分子,其中许多分子影响宿主生理学。在最丰富的代谢物中是仲胆汁酸碳酸(DCA)和锂电胆酸(LCA),其在约500μm的浓度下积聚,并且已知促使蛋黄衍生物1的生长,促进肝细胞癌癌2,并通过该促进肝细胞癌2并调节宿主代谢。 G蛋白偶联受体TGR5(参考文献3)。更广泛地,DCA,LCA及其衍生物是胆汁酸循环池的主要组成部分;该游泳池的大小和组成是原发性胆管炎和非酒精性脱脂性肝炎的疗法的靶标。尽管如此,尽管DCA和LCA对宿主生理的显然影响,但对其生物合成基因的不完全了解和缺乏遗传工具,以实现其天然微生物生产商的修改限制了我们调节宿主中的二次胆汁酸水平的能力。在这里,我们通过为其还原臂中的每一个步骤分配和表征酶来完成途径,揭示一种策略,其中类固醇芯的A-B环瞬时转换成用于携带的两个还原步骤的电子受体由Fe-S黄酮酶。使用厌氧体外重构,我们确定一组六个酶是必要的,并且足以使胆酸的八步转化为DCA。然后,我们将途径工程到梭菌孢子引发中,赋予DCA和LCA的产生在非发挥的共生和证明中可以表达和控制微生物组衍生的途径。这些数据建立了完整的胆汁酸池的中央部件的完整路径。

著录项

  • 来源
    《Nature》 |2020年第7813期|566-570|共5页
  • 作者单位

    Translational Research Department Daiichi Sankyo RD Novare Co. Ltd Tokyo Japan|Department of Bioengineering and ChEM-H Stanford University Stanford CA USA;

    Department of Biochemistry Albert Einstein College of Medicine Bronx NY USA;

    Department of Bioengineering and ChEM-H Stanford University Stanford CA USA;

    Department of Bioengineering and ChEM-H Stanford University Stanford CA USA;

    Department of Chemistry Indiana University Bloomington IN USA;

    Department of Chemistry Indiana University Bloomington IN USA;

    Department of Bioengineering and ChEM-H Stanford University Stanford CA USA;

    Department of Microbio|logy and Immunology Stanford University School of Medicine Stanford CA USA;

    Department of Biochemistry Albert Einstein College of Medicine Bronx NY USA;

    Department of Bioengineering and ChEM-H Stanford University Stanford CA USAChan Zuckerberg Biohub San Francisco CA USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 22:15:25

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号