首页> 外文期刊>Nature >Visualizing electrostatic gating effects in two-dimensional heterostructures
【24h】

Visualizing electrostatic gating effects in two-dimensional heterostructures

机译:在二维异质结构中可视化静电门控效应

获取原文
获取原文并翻译 | 示例
       

摘要

The ability to directly monitor the states of electrons in modern field-effect devices-for example, imaging local changes in the electrical potential, Fermi level and band structure as a gate voltage is applied-could transform our understanding of the physics and function of a device. Here we show that micrometre-scale, angle-resolved photoemission spectroscopy(1-3) (microARPES) applied to two-dimensional van der Waals heterostructures(4) affords this ability. In two-terminal graphene devices, we observe a shift of the Fermi level across the Dirac point, with no detectable change in the dispersion, as a gate voltage is applied. In two-dimensional semiconductor devices, we see the conduction-band edge appear as electrons accumulate, thereby firmly establishing the energy and momentum of the edge. In the case of monolayer tungsten diselenide, we observe that the bandgap is renormalized downwards by several hundreds of millielectronvolts-approaching the exciton energy-as the electrostatic doping increases. Both optical spectroscopy and microARPES can be carried out on a single device, allowing definitive studies of the relationship between gate-controlled electronic and optical properties. The technique provides a powerful way to study not only fundamental semiconductor physics, but also intriguing phenomena such as topological transitions(5) and many-body spectral reconstructions under electrical control.
机译:直接监视现代场效应装置中电子状态的能力 - 例如,施加了作为栅极电压的电位,费米电平和带结构中的局部变化 - 可以改变我们对物理和功能的理解设备。在这里,我们表明,施加到二维van der WaaS异质结构(4)的微米级,角度分辨的光曝光光谱(1-3)(微卡)提供了这种能力。在双端子石墨烯装置中,我们观察到沿DIAC点的费米水平的偏移,在施加栅极电压时,在分散中没有可检测的变化。在二维半导体器件中,我们看到导通带边缘看起来作为电子积聚,从而牢固地建立边缘的能量和动量。在单层钨丁烯烯内的情况下,我们观察到带隙以几百毫米的毫米电池向下重整,即静电掺杂增加。光谱和微卡可以在单个设备上进行,允许对栅极控制的电子和光学性质之间的关系进行确定。该技术提供了一种强大的方式来研究基础半导体物理学,而是还具有诸如拓扑转换(5)和电气控制下的许多身体光谱重建的有兴趣现象。

著录项

  • 来源
    《Nature》 |2019年第7768期|220-223|共4页
  • 作者单位

    Univ Washington Dept Phys Seattle WA 98195 USA;

    Univ Warwick Dept Phys Coventry W Midlands England;

    Univ Washington Dept Phys Seattle WA 98195 USA;

    Univ Washington Dept Phys Seattle WA 98195 USA;

    Univ Warwick Dept Phys Coventry W Midlands England;

    Univ Warwick Dept Phys Coventry W Midlands England;

    Elettra Sincrotrone Trieste SCpA Basovizza Italy;

    Elettra Sincrotrone Trieste SCpA Basovizza Italy;

    Elettra Sincrotrone Trieste SCpA Basovizza Italy;

    Univ Cambridge Cavendish Lab Theory Condensed Matter Grp Cambridge England;

    Univ Warwick Dept Phys Coventry W Midlands England;

    Univ Warwick Dept Phys Coventry W Midlands England;

    Univ Washington Dept Phys Seattle WA 98195 USA|Univ Washington Dept Mat Sci & Engn Seattle WA 98195 USA;

    Univ Washington Dept Phys Seattle WA 98195 USA;

    Univ Warwick Dept Phys Coventry W Midlands England;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 22:15:21

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号