首页> 外文期刊>Nature >Lysine harvesting is an antioxidant strategy and triggers underground polyamine metabolism
【24h】

Lysine harvesting is an antioxidant strategy and triggers underground polyamine metabolism

机译:赖氨酸收获是一种抗氧化策略,触发地下多胺代谢

获取原文
获取原文并翻译 | 示例
       

摘要

Both single and multicellular organisms depend on anti-stress mechanisms that enable them to deal with sudden changes in the environment, including exposure to heat and oxidants. Central to the stress response are dynamic changes in metabolism, such as the transition from the glycolysis to the pentose phosphate pathway-a conserved first-line response to oxidative insults(1,2). Here we report a second metabolic adaptation that protects microbial cells in stress situations. The role of the yeast polyamine transporter Tpo1p(3-5) in maintaining oxidant resistance is unknown(6). However, a proteomic time-course experiment suggests a link to lysine metabolism. We reveal a connection between polyamine and lysine metabolism during stress situations, in the form of a promiscuous enzymatic reaction in which the first enzyme of the polyamine pathway, Spe1p, decarboxylates lysine and forms an alternative polyamine, cadaverine. The reaction proceeds in the presence of extracellular lysine, which is taken up by cells to reach concentrations up to one hundred times higher than those required for growth. Such extensive harvest is not observed for the other amino acids, is dependent on the polyamine pathway and triggers a reprogramming of redox metabolism. As a result, NADPH-which would otherwise be required for lysine biosynthesis-is channelled into glutathione metabolism, leading to a large increase in glutathione concentrations, lower levels of reactive oxygen species and increased oxidant tolerance. Our results show that nutrient uptake occurs not only to enable cell growth, but when the nutrient availability is favourable it also enables cells to reconfigure their metabolism to preventatively mount stress protection.
机译:单细胞和多细胞生物依赖于抗应力机制,使它们能够处理环境的突然变化,包括暴露于热和氧化剂。应激反应的核心是新陈代谢的动态变化,例如从糖醇分解到戊糖磷酸盐途径的转变为氧化损伤的保守的一线反应(1,2)。在这里,我们报告了第二代谢适应,可保护压力情况下的微生物细胞。酵母多胺转运蛋白TPO1P(3-5)在维持氧化剂抗性方面的作用是未知的(6)。然而,蛋白质组学时间课程实验表明了赖氨酸代谢的联系。我们揭示了在应力情况下的多胺和赖氨酸代谢之间的联系,其形式是一种混杂的酶促反应,其中多胺途径,SPE1P,脱羧赖氨酸的第一种酶,并形成替代多胺,尸胺。反应在细胞外赖氨酸存在下进行,其被细胞占用以达到高于比生长所需的浓度高达一百次。对于其他氨基酸未观察到这种广泛的收获,取决于多胺途径,并触发氧化还原代谢的重新编程。结果,NADPH-否则将被赖氨酸生物合成的所需 - 被引导到谷胱甘肽代谢中,导致谷胱甘肽浓度的大幅增加,反应性氧物质的较低水平和增加的氧化剂耐受性。我们的结果表明,营养素摄取不仅可以实现细胞生长,而且当营养可用性有利时,它还使得细胞能够重新配置其代谢以预防性地支撑应力保护。

著录项

  • 来源
    《Nature》 |2019年第7768期|249-253|共5页
  • 作者单位

    Univ Cambridge Dept Biochem Cambridge England|Inst Nacl Ciencias Med & Nutr Salvador Zubiran Dept Nutr Physiol Mexico City DF Mexico;

    Francis Crick Inst Mol Biol Metab Lab London England;

    Univ Cambridge Dept Biochem Cambridge England|Univ Cambridge Med Res Council Mitochondrial Biol Unit Cambridge England;

    Univ Warwick Warwick Med Sch Coventry W Midlands England;

    Francis Crick Inst Mol Biol Metab Lab London England|UCL Dept Genet Evolut & Environm London England;

    Francis Crick Inst Mol Biol Metab Lab London England;

    Univ Cambridge Dept Biochem Cambridge England|Francis Crick Inst Mol Biol Metab Lab London England;

    Francis Crick Inst Mol Biol Metab Lab London England;

    BOKU Univ Nat Resources & Life Sci Dept Biotechnol Vienna Austria;

    Francis Crick Inst Mol Biol Metab Lab London England;

    Univ Nacl Autonoma Mexico Fac Quim Dept Farm Mexico City DF Mexico;

    Univ Cambridge Dept Biochem Cambridge England|Biognosys AG Schlieren Switzerland;

    Univ Cambridge Dept Biochem Cambridge England|Francis Crick Inst Mol Biol Metab Lab London England|Charite Dept Biochem Berlin Germany;

    Univ Cambridge Dept Biochem Cambridge England|Francis Crick Inst Mol Biol Metab Lab London England|Charite Dept Biochem Berlin Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 22:15:21

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号