首页> 外文期刊>Nature >Machine learning in electronic-quantum-matter imaging experiments
【24h】

Machine learning in electronic-quantum-matter imaging experiments

机译:电子量子物质成像实验中的机器学习

获取原文
获取原文并翻译 | 示例
       

摘要

For centuries, the scientific discovery process has been based on systematic human observation and analysis of natural phenomena(1). Today, however, automated instrumentation and large-scale data acquisition are generating datasets of such large volume and complexity as to defy conventional scientific methodology. Radically different scientific approaches are needed, and machine learning (ML) shows great promise for research fields such as materials science(2-5). Given the success of ML in the analysis of synthetic data representing electronic quantum matter (EQM)(6-16), the next challenge is to apply this approach to experimental data-for example, to the arrays of complex electronic-structure images(17) obtained from atomic-scale visualization of EQM. Here we report the development and training of a suite of artificial neural networks (ANNs) designed to recognize different types of order hidden in such EQM image arrays. These ANNs are used to analyse an archive of experimentally derived EQM image arrays from carrier-doped copper oxide Mott insulators. In these noisy and complex data, the ANNs discover the existence of a lattice-commensurate, four-unit-cell periodic, translational-symmetry-breaking EQM state. Further, the ANNs determine that this state is unidirectional, revealing a coincident nematic EQM state. Strong-coupling theories of electronic liquid crystals(18,19) are consistent with these observations.
机译:几个世纪以来,科学发现过程一直基于系统的人类观察和自然现象的分析(1)。然而,如今,自动化仪器和大规模数据采集正在产生这种大容量和复杂性的数据集,以缺乏传统的科学方法。需要彻底不同的科学方法,机器学习(ML)对材料科学(2-5)等研究领域表示了很大的承诺。鉴于ML的成功在分析综合数据的分析中表示电子量子物质(EQM)(6-16),下一个挑战是将这种方法应用于实验数据 - 例如,到复杂电子结构图像的阵列(17 )从EQM的原子级可视化获得。在这里,我们报告了对旨在识别在这种EQM图像阵列中隐藏的不同类型的顺序的人工神经网络(ANNS)的开发和培训。这些ANNS用于从载体掺杂的铜氧化铜氧化物MOTT绝缘体分析实验衍生的EQM图像阵列的档案。在这些嘈杂和复杂的数据中,ANNS发现存在格子相称的四单元 - 小区周期性,翻译对称的EQM状态。此外,ANN确定该状态是单向的,揭示了一致的象征式EQM状态。电子液晶(18,19)的强耦合理论与这些观察结果一致。

著录项

  • 来源
    《Nature》 |2019年第7762期|484-490|共7页
  • 作者单位

    Cornell Univ Dept Phys Ithaca NY 14853 USA;

    Cornell Univ Dept Phys Ithaca NY 14853 USA|Univ Paris Sud CNRS Lab Phys Solides Orsay France;

    Brookhaven Natl Lab Condensed Matter Phys & Mat Sci Dept Upton NY 11973 USA;

    Cornell Univ Dept Phys Ithaca NY 14853 USA|Stanford Univ Dept Appl Phys Stanford CA 94305 USA;

    Harvard Univ Dept Phys Cambridge MA 02138 USA;

    San Jose State Univ Dept Phys & Astron San Jose CA 95192 USA;

    Natl Inst Adv Ind Sci & Technol Tsukuba Ibaraki Japan;

    Natl Inst Adv Ind Sci & Technol Tsukuba Ibaraki Japan|Univ Tokyo Dept Phys Tokyo Japan;

    Cornell Univ Dept Phys Ithaca NY 14853 USA|Brookhaven Natl Lab Condensed Matter Phys & Mat Sci Dept Upton NY 11973 USA|Univ Coll Cork Dept Phys Cork Ireland|Univ Oxford Clarendon Lab Oxford England;

    San Jose State Univ Dept Phys & Astron San Jose CA 95192 USA;

    Cornell Univ Dept Phys Ithaca NY 14853 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 22:15:18

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号