首页> 外文期刊>Nature >Machine learning in electronic-quantum-matter imaging experiments
【24h】

Machine learning in electronic-quantum-matter imaging experiments

机译:电子量子物质成像实验中的机器学习

获取原文
获取原文并翻译 | 示例
       

摘要

For centuries, the scientific discovery process has been based on systematic human observation and analysis of natural phenomena(1). Today, however, automated instrumentation and large-scale data acquisition are generating datasets of such large volume and complexity as to defy conventional scientific methodology. Radically different scientific approaches are needed, and machine learning (ML) shows great promise for research fields such as materials science(2-5). Given the success of ML in the analysis of synthetic data representing electronic quantum matter (EQM)(6-16), the next challenge is to apply this approach to experimental data-for example, to the arrays of complex electronic-structure images(17) obtained from atomic-scale visualization of EQM. Here we report the development and training of a suite of artificial neural networks (ANNs) designed to recognize different types of order hidden in such EQM image arrays. These ANNs are used to analyse an archive of experimentally derived EQM image arrays from carrier-doped copper oxide Mott insulators. In these noisy and complex data, the ANNs discover the existence of a lattice-commensurate, four-unit-cell periodic, translational-symmetry-breaking EQM state. Further, the ANNs determine that this state is unidirectional, revealing a coincident nematic EQM state. Strong-coupling theories of electronic liquid crystals(18,19) are consistent with these observations.
机译:几个世纪以来,科学发现过程一直基于人类对自然现象的系统观察和分析(1)。然而,今天,自动化仪器和大规模数据采集正在产生如此庞大和复杂的数据集,以至于无视常规的科学方法论。需要根本不同的科学方法,并且机器学习(ML)在诸如材料科学(2-5)的研究领域显示出巨大的希望。鉴于ML在代表电子量子物质(EQM)的合成数据分析中的成功(6-16),下一个挑战是将这种方法应用于实验数据,例如应用于复杂的电子结构图像阵列(17) )从EQM的原子级可视化获得。在这里,我们报告了一套旨在识别这种EQM图像阵列中隐藏的不同类型顺序的人工神经网络(ANN)的开发和培训。这些人工神经网络用于分析由载流子掺杂的氧化铜Mott绝缘子实验得出的EQM图像阵列的档案。在这些嘈杂而复杂的数据中,人工神经网络发现了一个格点对应,四单元胞周期,平移对称性破坏的EQM状态。此外,人工神经网络确定该状态为单向的,从而揭示了重合的向列EQM状态。电子液晶的强耦合理论(18,19)与这些观察结果一致。

著录项

  • 来源
    《Nature》 |2019年第7762期|484-490|共7页
  • 作者单位

    Cornell Univ, Dept Phys, Ithaca, NY 14853 USA;

    Cornell Univ, Dept Phys, Ithaca, NY 14853 USA|Univ Paris Sud, CNRS, Lab Phys Solides, Orsay, France;

    Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA;

    Cornell Univ, Dept Phys, Ithaca, NY 14853 USA|Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA;

    Harvard Univ, Dept Phys, Cambridge, MA 02138 USA;

    San Jose State Univ, Dept Phys & Astron, San Jose, CA 95192 USA;

    Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki, Japan;

    Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki, Japan|Univ Tokyo, Dept Phys, Tokyo, Japan;

    Cornell Univ, Dept Phys, Ithaca, NY 14853 USA|Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA|Univ Coll Cork, Dept Phys, Cork, Ireland|Univ Oxford, Clarendon Lab, Oxford, England;

    San Jose State Univ, Dept Phys & Astron, San Jose, CA 95192 USA;

    Cornell Univ, Dept Phys, Ithaca, NY 14853 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 04:17:38

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号