首页> 外文期刊>Nature >Universal quantum logic in hot silicon qubits
【24h】

Universal quantum logic in hot silicon qubits

机译:热硅量子位中的通用量子逻辑

获取原文
获取原文并翻译 | 示例
       

摘要

Quantum computation requires many qubits that can be coherently controlled and coupled to each other~(1). Qubits that are defined using lithographic techniques have been suggested to enable the development of scalable quantum systems because they can be implemented using semiconductor fabrication technology~(2-5). However, leading solid-state approaches function only at temperatures below 100 millikelvin, where cooling power is extremely limited, and this severely affects the prospects of practical quantum computation. Recent studies of electron spins in silicon have made progress towards a platform that can be operated at higher temperatures by demonstrating long spin lifetimes~(6), gate-based spin readout~(7)and coherent single-spin control~(8). However, a high-temperature two-qubit logic gate has not yet been demonstrated. Here we show that silicon quantum dots can have sufficient thermal robustness to enable the execution of a universal gate set at temperatures greater than one kelvin. We obtain single-qubit control via electron spin resonance and readout using Pauli spin blockade. In addition, we show individual coherent control of two qubits and measure single-qubit fidelities of up to 99.3 per cent. We demonstrate the tunability of the exchange interaction between the two spins from 0.5 to 18 megahertz and use it to execute coherent two-qubit controlled rotations. The demonstration of 'hot' and universal quantum logic in a semiconductor platform paves the way for quantum integrated circuits that host both the quantum hardware and its control circuitry on the same chip, providing a scalable approach towards practical quantum information processing.
机译:量子计算需要许多量子比特,这些量子比特可以被相干地控制并相互耦合(1)。由于使用光刻技术定义的量子位可以使用半导体制造技术来实现,因此已经提出了量子位的开发方法(2-5)。然而,领先的固态方法仅在低于100毫凯尔文的温度下起作用,在该温度下冷却功率极为有限,这严重影响了实际量子计算的前景。硅中电子自旋的最新研究通过证明较长的自旋寿命〜(6),基于栅极的自旋读出〜(7)和相干的单自旋控制〜(8),已朝着可以在更高温度下运行的平台发展。然而,高温两量子位逻辑门尚未得到证明。在这里,我们表明硅量子点可以具有足够的热稳定性,从而能够在高于一个开尔文的温度下执行通用门设置。我们通过电子自旋共振获得单量子位控制,并使用保利自旋封锁进行读出。此外,我们显示了两个量子位的单独相干控制,并测量了高达99.3%的单个量子位保真度。我们演示了从0.5到18兆赫兹的两个自旋之间交换相互作用的可调性,并用它来执行相干的两量子位控制的旋转。半导体平台中“热”和通用量子逻辑的演示为在同一芯片上同时托管量子硬件及其控制电路的量子集成电路铺平了道路,为实际的量子信息处理提供了可扩展的方法。

著录项

  • 来源
    《Nature》 |2020年第7803期|355-359|共5页
  • 作者

  • 作者单位

    QuTech and Kavli Institute of Nanoscience Delft University of Technology;

    Components Research Intel Corporation;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 05:22:22

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号