首页> 外文期刊>Nature >Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations
【24h】

Measuring the Berry phase of graphene from wavefront dislocations in Friedel oscillations

机译:从Friedel振荡中的波前位错测量石墨烯的Berry相

获取原文
获取原文并翻译 | 示例
           

摘要

Electronic band structures dictate the mechanical, optical and electrical properties of crystalline solids. Their experimental determination is therefore crucial for technological applications. Although the spectral distribution in energy bands is routinely measured by various techniques(1), it is more difficult to access the topological properties of band structures such as the quantized Berry phase, gamma, which is a gauge-invariant geometrical phase accumulated by the wavefunction along an adiabatic cycle(2). In graphene, the quantized Berry phase gamma = pi accumulated by massless relativistic electrons along cyclotron orbits is evidenced by the anomalous quantum Hall effect(4,5). It is usually thought that measuring the Berry phase requires the application of external electromagnetic fields to force the charged particles along closed trajectories(3). Contradicting this belief, here we demonstrate that the Berry phase of graphene can be measured in the absence of any external magnetic field. We observe edge dislocations in oscillations of the charge density rho (Friedel oscillations) that are formed at hydrogen atoms chemisorbed on graphene. Following Nye and Berry(6) in describing these topological defects as phase singularities of complex fields, we show that the number of additional wavefronts in the dislocation is a real-space measure of the Berry phase of graphene. Because the electronic dispersion relation can also be determined from Friedel oscillations(7), our study establishes the charge density as a powerful observable with which to determine both the dispersion relation and topological properties of wavefunctions. This could have profound consequences for the study of the band-structure topology of relativistic and gapped phases in solids.
机译:电子能带结构决定了结晶固体的机械,光学和电学性质。因此,它们的实验确定对于技术应用至关重要。尽管通常通过各种技术来测量能带中的光谱分布(1),但更难以访问能带结构的拓扑特性,例如量化的Berry相,γ,它是通过波函数积累的规范不变的几何相沿着绝热周期(2)。在石墨烯中,无质量的相对论电子沿着回旋加速器轨道积累的量化的Berry相g = pi由异常量子霍尔效应证明(4,5)。通常认为,测量贝里相需要施加外部电磁场,以使带电粒子沿着闭合轨迹移动(3)。与此信念相反,这里我们证明了可以在没有任何外部磁场的情况下测量石墨烯的贝里相。我们观察到在石墨烯化学吸附的氢原子上形成的电荷密度rho(弗里德振荡)的振荡中的位错。遵循Nye和Berry(6)将这些拓扑缺陷描述为复杂场的相奇异性之后,我们表明位错中附加波前的数量是石墨烯Berry相的实空间量度。因为也可以从Friedel振荡中确定电子色散关系(7),所以我们的研究将电荷密度确定为一个强大的可观测值,可用来确定色散关系和波函数的拓扑特性。这可能对固体中相对论和空隙相的能带结构拓扑学研究产生深远的影响。

著录项

  • 来源
    《Nature》 |2019年第7777期|219-222|共4页
  • 作者单位

    Univ Bordeaux Lab Ondes & Mat Aquitaine CNRS UMR 5798 Talence France;

    Univ Autonoma Madrid Dept Fis Mat Condensada Madrid Spain|Univ Autonoma Madrid Condensed Matter Phys Ctr IFIMAC Madrid Spain;

    Univ Autonoma Madrid Dept Fis Mat Condensada Madrid Spain|Univ Autonoma Madrid Condensed Matter Phys Ctr IFIMAC Madrid Spain|Univ Autonoma Madrid Inst Nicolas Cabrera Madrid Spain;

    Radboud Univ Nijmegen Inst Mol & Mat Nijmegen Netherlands;

    Univ Grenoble Alpes CEA IRIG PHELIQS Grenoble France;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号