首页> 外文期刊>Nature >Spin-orbit-driven band inversion in bilayer graphene by the van der Waals proximity effect
【24h】

Spin-orbit-driven band inversion in bilayer graphene by the van der Waals proximity effect

机译:范德华邻近效应在双层石墨烯中自旋轨道驱动的能带反转

获取原文
获取原文并翻译 | 示例
       

摘要

Spin-orbit coupling (SOC) is the key to realizing time-reversal-invariant topological phases of matter(1,2). SOC was predicted by Kane and Mele(3) to stabilize a quantum spin Hall insulator; however, the weak intrinsic SOC in monolayer graphene(4-7) has precluded experimental observation in this material. Here we exploit a layer-selective proximity effect-achieved via a van der Waals contact with a semiconducting transition-metal dichalcogenide(8-21)-to engineer Kane-Mele SOC in ultra clean bilayer graphene. Using high-resolution capacitance measurements to probe the bulk electronic compressibility, we find that SOC leads to the formation of a distinct, incompressible, gapped phase at charge neutrality. The experimental data agree quantitatively with a simple theoretical model in which the new phase results from SOC-driven band inversion. In contrast to Kane-Mele SOC in monolayer graphene, the inverted phase is not expected to be a time-reversal-invariant topological insulator, despite being separated from conventional band insulators by electric-field-tuned phase transitions where crystal symmetry mandates that the bulk gap must close(22). Our electrical transport measurements reveal that the inverted phase has a conductivity of approximately e(2)/h (where e is the electron charge and h Planck's constant), which is suppressed by exceptionally small in-plane magnetic fields. The high conductivity and anomalous magnetoresistance are consistent with theoretical models that predict helical edge states within the inverted phase that are protected from backscattering by an emergent spin symmetry that remains robust even for large Rashba SOC. Our results pave the way for proximity engineering of strong topological insulators as well as correlated quantum phases in the strong spin-orbit regime in graphene heterostructures.
机译:自旋轨道耦合(SOC)是实现物质的时间反转不变拓扑阶段的关键(1,2)。 Kane和Mele(3)预测SOC可以稳定量子自旋霍尔绝缘体。然而,单层石墨烯(4-7)中的弱本征SOC阻止了该材料的实验观察。在这里,我们利用范德华与半导体过渡金属二卤化二硫(8-21)的范德华接触实现的层选择性接近效应,以设计超干净双层石墨烯中的Kane-Mele SOC。使用高分辨率电容测量来探测整体电子可压缩性,我们发现SOC导致在电荷中性时形成独特的,不可压缩的带隙相。实验数据与简单的理论模型定量吻合,在该理论模型中,新阶段是由SOC驱动的频带反转产生的。与单层石墨烯中的Kane-Mele SOC相比,尽管通过电场调谐的相变将其与常规的带状绝缘子隔离开来,但由于晶体对称性要求体积庞大,所以反相不会被认为是时变不变的拓扑绝缘子。间隙必须关闭(22)。我们的电传输测量结果显示,反相的电导率约为e(2)/ h(其中e是电子电荷,h Planck常数),这被极小的平面​​内磁场抑制了。高电导率和异常磁阻与预测反向相中的螺旋边缘状态的理论模型相一致,该相变边缘状态通过出现的自旋对称性(即使对于大型Rashba SOC而言仍保持稳健)受到保护,免受反向散射。我们的研究结果为石墨烯异质结构中强自旋轨道结构中强拓扑绝缘体以及相关量子相的邻近工程铺平了道路。

著录项

  • 来源
    《Nature》 |2019年第7763期|85-89|共5页
  • 作者单位

    Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA;

    Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA;

    MIT, Dept Phys, Cambridge, MA 02139 USA;

    MIT, Dept Phys, Cambridge, MA 02139 USA;

    Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA;

    Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA;

    Columbia Univ, Dept Mech Engn, New York, NY 10027 USA;

    Columbia Univ, Dept Mech Engn, New York, NY 10027 USA;

    Natl Inst Mat Sci, Adv Mat Lab, Tsukuba, Ibaraki, Japan;

    Natl Inst Mat Sci, Adv Mat Lab, Tsukuba, Ibaraki, Japan;

    MIT, Dept Phys, Cambridge, MA 02139 USA;

    Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA;

    Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 04:17:38

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号