首页> 外文期刊>Nature >Onset of differentiation is post-transcriptionally controlled in adult neural stem cells
【24h】

Onset of differentiation is post-transcriptionally controlled in adult neural stem cells

机译:在成年神经干细胞中转录后控制分化的开始

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Whether post-transcriptional regulation of gene expression controls differentiation of stem cells for tissue renewal remains unknown. Quiescent stem cells exhibit a low level of protein synthesis(1), which is key to maintaining the pool of fully functional stem cells, not only in the brain but also in the bone marrow and hair follicles(2-6). Neurons also maintain a subset of messenger RNAs in a translationally silent state, which react 'on demand' to intracellular and extracellular signals. This uncoupling of general availability of mRNA from translation into protein facilitates immediate responses to environmental changes and avoids excess production of proteins, which is the most energy-consuming process within the cell. However, when post-transcriptional regulation is acquired and how protein synthesis changes along the different steps of maturation are not known. Here we show that protein synthesis undergoes highly dynamic changes when stem cells differentiate to neurons in vivo. Examination of individual transcripts using RiboTag mouse models reveals that whereas stem cells translate abundant transcripts with little discrimination, translation becomes increasingly regulated with the onset of differentiation. The generation of neurogenic progeny involves translational repression of a subset of mRNAs, including mRNAs that encode the stem cell identity factors SOX2 and PAX6, and components of the translation machinery, which are enriched in a pyrimidine-rich motif. The decrease of mTORC1 activity as stem cells exit the cell cycle selectively blocks translation of these transcripts. Our results reveal a control mechanism by which the cell cycle is coupled to posttranscriptional repression of key stem cell identity factors, thereby promoting exit from stemness.
机译:基因表达的转录后调控是否控制着干细胞的分化以进行组织更新尚不清楚。静止的干细胞蛋白质合成水平较低(1),这对于维持功能全面的干细胞池至关重要,不仅在大脑中,而且在骨髓和毛囊中(2-6)。神经元也将信使RNA的子集保持在翻译沉默状态,对细胞内和细胞外信号“按需”反应。从翻译成蛋白质到mRNA的一般可用性的这种解耦促进了对环境变化的即时响应,并避免了蛋白质的过量生产,这是细胞内最耗能的过程。然而,何时获得转录后调控以及蛋白质合成如何沿着成熟的不同步骤变化尚不清楚。在这里,我们显示当干细胞在体内分化为神经元时,蛋白质合成会经历高度动态的变化。使用RiboTag小鼠模型对单个转录本进行检查后发现,尽管干细胞几乎不加区分地翻译大量转录本,但随着分化的开始,翻译变得越来越受监管。神经源性后代的产生涉及mRNA子集的翻译抑制,包括编码干细胞同一性因子SOX2和PAX6的mRNA,以及富含富嘧啶基序的翻译机器组件。随着干细胞退出细胞周期,mTORC1活性的降低选择性地阻断了这些转录本的翻译。我们的结果揭示了一种控制机制,通过该机制细胞周期与关键干细胞同一性因子的转录后抑制相结合,从而促进了从干性的退出。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号