首页> 外文期刊>Nature >Ionic colloidal crystals of oppositely charged particles
【24h】

Ionic colloidal crystals of oppositely charged particles

机译:带相反电荷的粒子的离子胶体晶体

获取原文
获取原文并翻译 | 示例
       

摘要

Colloidal suspensions are widely used to study processes such as melting, freezing(1-3) and glass transitions(4,5). This is because they display the same phase behaviour as atoms or molecules, with the nano- to micrometre size of the colloidal particles making it possible to observe them directly in real space(3,4). Another attractive feature is that different types of colloidal interactions, such as long-range repulsive(1,3), short-range attractive(5), hard-sphere-like(2-4) and dipolar(3), can be realized and give rise to equilibrium phases. However, spherically symmetric, long-range attractions ( that is, ionic interactions) have so far always resulted in irreversible colloidal aggregation(6). Here we show that the electrostatic interaction between oppositely charged particles can be tuned such that large ionic colloidal crystals form readily, with our theory and simulations confirming the stability of these structures. We find that in contrast to atomic systems, the stoichiometry of our colloidal crystals is not dictated by charge neutrality; this allows us to obtain a remarkable diversity of new binary structures. An external electric field melts the crystals, confirming that the constituent particles are indeed oppositely charged. Colloidal model systems can thus be used to study the phase behaviour of ionic species. We also expect that our approach to controlling opposite-charge interactions will facilitate the production of binary crystals of micrometre-sized particles, which could find use as advanced materials for photonic applications(7).
机译:胶体悬浮液被广泛用于研究诸如熔化,冷冻(1-3)和玻璃化转变(4,5)的过程。这是因为它们显示出与原子或分子相同的相态,胶体颗粒的纳米级到微米级的尺寸使得可以在真实空间中直接观察它们(3,4)。另一个吸引人的特点是可以实现不同类型的胶体相互作用,例如长距离排斥(1,3),短距离吸引(5),类硬球体(2-4)和偶极子(3)并引起平衡阶段。但是,到目前为止,球形对称的长距离吸引(即离子相互作用)始终导致不可逆的胶体聚集(6)。在这里,我们证明了可以调节带相反电荷的粒子之间的静电相互作用,从而易于形成大的离子胶体晶体,而我们的理论和模拟证实了这些结构的稳定性。我们发现与原子系统相反,我们的胶体晶体的化学计量不是由电荷中性决定的。这使我们可以获得大量的新二进制结构。外部电场使晶体熔化,从而确认组成颗粒确实带相反电荷。因此,胶体模型系统可用于研究离子物质的相态。我们还期望我们控制相反电荷相互作用的方法将有助于产生微米级颗粒的二元晶体,这些二元晶体可以用作光子学应用的高级材料(7)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号