首页> 外文期刊>Nature >A mechanical explanation of RNA pseudoknot function in programmed ribosomal frameshifting
【24h】

A mechanical explanation of RNA pseudoknot function in programmed ribosomal frameshifting

机译:核糖体移码中RNA假结功能的机械解释

获取原文
获取原文并翻译 | 示例
       

摘要

The triplet-based genetic code requires that translating ribosomes maintain the reading frame of a messenger RNA faithfully to ensure correct protein synthesis(1). However, in programmed -1 ribosomal frameshifting(2), a specific subversion of frame maintenance takes place, wherein the ribosome is forced to shift one nucleotide backwards into an overlapping reading frame and to translate an entirely new sequence of amino acids. This process is indispensable in the replication of numerous viral pathogens, including HIV and the coronavirus associated with severe acute respiratory syndrome(3), and is also exploited in the expression of several cellular genes(4). Frameshifting is promoted by an mRNA signal composed of two essential elements: a heptanucleotide 'slippery' sequence(5) and an adjacent mRNA secondary structure, most often an mRNA pseudoknot(6). How these components operate together to manipulate the ribosome is unknown. Here we describe the observation of a ribosome - mRNA pseudoknot complex that is stalled in the process of -1 frameshifting. Cryoelectron microscopic imaging of purified mammalian 80S ribosomes from rabbit reticulocytes paused at a coronavirus pseudoknot reveals an intermediate of the frameshifting process. From this it can be seen how the pseudoknot interacts with the ribosome to block the mRNA entrance channel, compromising the translocation process and leading to a spring-like deformation of the P-site transfer RNA. In addition, we identify movements of the likely eukaryotic ribosomal helicase and confirm a direct interaction between the translocase eEF2 and the P-site tRNA. Together, the structural changes provide a mechanical explanation of how the pseudoknot manipulates the ribosome into a different reading frame.
机译:基于三联体的遗传密码要求翻译核糖体忠实地维持信使RNA的阅读框架,以确保正确的蛋白质合成(1)。但是,在程序化的-1核糖体移码(2)中,发生了特定的构架颠覆,其中迫使核糖体将一个核苷酸向后移入重叠的阅读框并翻译了全新的氨基酸序列。这个过程是众多病毒病原体复制中必不可少的,包括HIV和与严重急性呼吸系统综合症相关的冠状病毒(3),并且还被用于表达几种细胞基因(4)。由两个基本元素组成的mRNA信号促进移码:一个七核苷酸“滑”序列(5)和一个相邻的mRNA二级结构,最常见的是一个mRNA假结(6)。这些组件如何一起操作来操纵核糖体尚不清楚。在这里,我们描述了在-1移码过程中停滞的核糖体-mRNA假结复合体的观察。从停在冠状病毒假结上的兔网织红细胞纯化的哺乳动物80S核糖体的低温电子显微镜成像揭示了移码过程的中间过程。从中可以看出,假结如何与核糖体相互作用以阻断mRNA的进入通道,从而破坏了易位过程并导致了P位转移RNA的弹簧状变形。此外,我们确定了可能的真核核糖体解旋酶的运动,并确认了转位酶eEF2和P位点tRNA之间的直接相互作用。在一起,结构的变化提供了假结如何将核糖体操纵到另一个阅读框中的机械解释。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号