首页> 外文期刊>Nature >DNA primase acts as a molecular brake in DNA replication
【24h】

DNA primase acts as a molecular brake in DNA replication

机译:DNA primase充当DNA复制中的分子刹车

获取原文
获取原文并翻译 | 示例
       

摘要

A hallmark feature of DNA replication is the coordination between the continuous polymerization of nucleotides on the leading strand and the discontinuous synthesis of DNA on the lagging strand(1). This synchronization requires a precisely timed series of enzymatic steps that control the synthesis of an RNA primer, the recycling of the lagging-strand DNA polymerase, and the production of an Okazaki fragment. Primases synthesize RNA primers at a rate that is orders of magnitude lower(2-4) than the rate of DNA synthesis by the DNA polymerases at the fork. Furthermore, the recycling of the lagging-strand DNA polymerase from a finished Okazaki fragment to a new primer is inherently slower than the rate of nucleotide polymerization(5). Different models have been put forward to explain how these slow enzymatic steps can take place at the lagging strand without losing coordination with the continuous and fast leading-strand synthesis(6-8). Nonetheless, a clear picture remains elusive. Here we use single-molecule techniques to study the kinetics of a multiprotein replication complex from bacteriophage T7 and to characterize the effect of primase activity on fork progression. We observe the synthesis of primers on the lagging strand to cause transient pausing of the highly processive leading-strand synthesis. In the presence of both leading- and lagging-strand synthesis, we observe the formation and release of a replication loop on the lagging strand. Before loop formation, the primase acts as a molecular brake and transiently halts progression of the replication fork. This observation suggests a mechanism that prevents leading- strand synthesis from outpacing lagging-strand synthesis during the slow enzymatic steps on the lagging strand.
机译:DNA复制的一个标志性特征是前导链上核苷酸的连续聚合与落后链上DNA的不连续合成之间的协调(1)。这种同步需要精确定时的一系列酶促步骤,这些步骤控制RNA引物的合成,滞后链DNA聚合酶的循环以及冈崎片段的产生。 primases合成RNA引物的速率比分叉处的DNA聚合酶的DNA合成速率低(2-4)个数量级。此外,从完成的Okazaki片段到新引物的落后链DNA聚合酶的回收固有地比核苷酸聚合的速度慢(5)。提出了不同的模型来解释这些缓慢的酶促步骤如何在滞后链发生而不失去与连续和快速前导链合成的协调性(6-8)。尽管如此,清晰的画面仍然难以捉摸。在这里,我们使用单分子技术来研究噬菌体T7的多蛋白复制复合物的动力学,并表征启动酶活性对叉子进展的影响。我们观察到在滞后链上引物的合成,导致高过程性前导链合成的瞬时暂停。在存在前导链和滞后链合成的情况下,我们观察到在滞后链上复制环的形成和释放。在形成环之前,引发酶起分子制动作用,并暂时停止复制叉的进程。该观察结果提示了一种机制,该机制可防止在滞后链上缓慢的酶促步骤中,前导链的合成速度超过滞后链的合成。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号