首页> 外文期刊>Nature >'Trapped rainbow' storage of light in metamaterials
【24h】

'Trapped rainbow' storage of light in metamaterials

机译:超材料中的“陷阱彩虹”光存储

获取原文
获取原文并翻译 | 示例
           

摘要

Light usually propagates inside transparent materials in well known ways. However, recent research has examined the possibility of modifying the way the light travels by taking a normal transparent dielectric and inserting tiny metallic inclusions of various shapes and arrangements. As light passes through these structures, oscillating electric currents are set up that generate electromagnetic field moments; these can lead to dramatic effects on the light propagation, such as negative refraction. Possible applications include lenses that break traditional diffraction limits and 'invisibility cloaks' (refs 5, 6). Significantly less research has focused on the potential of such structures for slowing, trapping and releasing light signals. Here we demonstrate theoretically that an axially varying heterostructure with a metamaterial core of negative refractive index can be used to efficiently and coherently bring light to a complete standstill. In contrast to previous approaches for decelerating and storing light, the present scheme simultaneously allows for high in-coupling efficiencies and broadband, room-temperature operation. Surprisingly, our analysis reveals a critical point at which the effective thickness of the waveguide is reduced to zero, preventing the light wave from propagating further. At this point, the light ray is permanentlyrntrapped, its trajectory forming a double light-cone that we call an 'optical clepsydra'. Each frequency component of the wave packet is stopped at a different guide thickness, leading to the spatial separation of its spectrum and the formation of a 'trapped rainbow'. Our results bridge the gap between two important contemporary realms of science—metamaterials and slow light. Combined investigations may lead to applications in optical data processing and storage or the realization of quantum optical memories.
机译:光通常以众所周知的方式在透明材料内部传播。但是,最近的研究已经研究了通过采用普通的透明电介质并插入各种形状和排列的微小金属夹杂物来改变光传播方式的可能性。当光穿过这些结构时,会产生振荡电流,从而产生电磁场力矩;这些会导致对光传播的巨大影响,例如负折射。可能的应用包括打破传统衍射极限和“隐形斗篷”的镜片(参考文献5、6)。很少有研究集中在这种结构减慢,捕获和释放光信号的潜力上。在这里,我们从理论上证明具有负折射率超材料核的轴向变化的异质结构可用于有效且相干地使光完全停滞。与先前的用于减速和存储光的方法相反,本方案同时允许高耦合效率以及宽带,室温操作。出乎意料的是,我们的分析揭示了一个临界点,在该临界点处,波导的有效厚度减小到零,从而防止了光波进一步传播。在这一点上,光线被永久性地捕获,其轨迹形成了一个双光锥,我们称之为“光学漏壶”。波包的每个频率分量都以不同的引导厚度停止,从而导致其频谱在空间上分离并形成“陷落的彩虹”。我们的结果弥合了当代两个重要的科学领域-超材料和慢光之间的鸿沟。联合研究可能会导致在光学数据处理和存储或量子光学存储器的实现中的应用。

著录项

  • 来源
    《Nature》 |2007年第7168期|397-401|共5页
  • 作者单位

    Advanced Technology Institute and Department of Physics, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU7 1QR, UK;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 自然科学总论;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号