首页> 外文期刊>Nature >Controlled exchange interaction between pairs of neutral atoms in an optical lattice
【24h】

Controlled exchange interaction between pairs of neutral atoms in an optical lattice

机译:光学晶格中成对的中性原子对之间的受控交换相互作用

获取原文
获取原文并翻译 | 示例
           

摘要

Ultracold atoms trapped by light offer robust quantum coherence and controllability, providing an attractive system for quantum information processing and for the simulation of complex problems in condensed matter physics. Many quantum information processing schemes require the manipulation and deterministic entanglement of individual qubits; this would typically be accomplished using controlled, state-dependent, coherent interactions among qubits. Recent experiments have made progress towards this goal by demonstrating entanglement among an ensemble of atoms confined in an optical lattice. Until now, however, there has been no demonstration of a key operation: controlled entanglement between atoms in isolated pairs. Here we use an optical lattice of double-well potentials to isolate and manipulate arrays of paired ~(87)Rb atoms, inducing controlled entangling interactions within each pair. Our experiment realizes proposals to use controlled exchange coupling in a system of neutral atoms. Although ~(87)Rb atoms have nearly state-independent interactions, when we force two atoms into the same physical location, the wavefunction exchange symmetry of these identical bosons leads to state-dependent dynamics. We observe repeated interchange of spin between atoms occupying different vibrational levels, with a coherence time of more than ten milliseconds. This observation demonstrates the essential component of a neutral atom quantum SWAP gate (which interchanges the state of two qubits). Its 'half-implementation', the (SWAP)~(1/2) gate, is entangling, and together with single-qubit rotations it forms a set of universal gates for quantum computation.
机译:被光俘获的超冷原子提供了强大的量子相干性和可控性,为量子信息处理和凝聚态物理中复杂问题的仿真提供了一个有吸引力的系统。许多量子信息处理方案需要对各个量子位进行操纵和确定性纠缠。通常,这可以通过使用量子位之间受控的,状态相关的,相干的交互来完成。最近的实验通过证明束缚在光学晶格中的原子之间的纠缠,朝着这一目标取得了进展。但是,到目前为止,还没有任何关键操作的证明:孤立对中原子之间的受控纠缠。在这里,我们使用双阱势能的光学晶格来隔离和操纵成对的〜(87)Rb原子阵列,从而在每对中诱导受控的纠缠相互作用。我们的实验实现了在中性原子系统中使用受控交换耦合的建议。尽管〜(87)Rb原子几乎具有与状态无关的相互作用,但是当我们将两个原子强迫进入相同的物理位置时,这些相同玻色子的波函数交换对称性导致了与状态有关的动力学。我们观察到占据不同振动水平的原子之间的自旋反复交换,相干时间超过十毫秒。该观察证明了中性原子量子SWAP门的基本组成部分(交换两个量子位的状态)。它的“半实现”(SWAP)〜(1/2)门纠缠不清,并且与单量子位旋转一起形成了一组用于量子计算的通用门。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号