首页> 外文期刊>Nature >High-temperature interface superconductivity between metallic and insulating copper oxides
【24h】

High-temperature interface superconductivity between metallic and insulating copper oxides

机译:金属和绝缘铜氧化物之间的高温界面超导性

获取原文
获取原文并翻译 | 示例
       

摘要

The realization of high-transition-temperature (high-T_c) superconductivity confined to nanometre-sized interfaces has been a long-standing goal because of potential applications and the opportunity to study quantum phenomena in reduced dimensions. This has been, however, a challenging target: in conventional metals, the high electron density restricts interface effects (such as carrier depletion or accumulation) to a region much narrower than the coherence length, which is the scale necessary for superconductivity to occur. By contrast, in copper oxides the carrier density is low whereas T_c is high and the coherence length very short, which provides an opportunity-but at a price: the interface must be atomically perfect. Here we report superconductivity in bilayers consisting of an insulator (La_2CuO_4) and a metal (La_(1.55)Sr_(0.45)CuO_4), neither of which is superconducting in isolation. In these bilayers, T_c is either ~15 K or ~30 K, depending on the layering sequence. This highly robust phenomenon is confined within 2-3 nm of the interface. If such a bilayer is exposed to ozone, T_c exceeds 50 K, and this enhanced superconductivity is also shown to originate from an interface layer about 1-2 unit cells thick. Enhancement of T_c in bilayer systems was observed previously but the essential role of the interface was not recognized at the time.
机译:限制在纳米级界面上的高转变温度(high-T_c)超导性的实现是一个长期的目标,因为它具有潜在的应用前景,并且有机会研究尺寸较小的量子现象。但是,这一直是一个具有挑战性的目标:在常规金属中,高电子密度将界面效应(例如载流子耗尽或积累)限制在比相干长度窄得多的区域,而相干长度是发生超导的必要尺度。相反,在氧化铜中,载流子密度低,而T_c高,相干长度非常短,这提供了一个机会,但要付出代价:界面必须原子上完美。在这里,我们报告了由绝缘体(La_2CuO_4)和金属(La_(1.55)Sr_(0.45)CuO_4)组成的双层中的超导性,它们都不是孤立地超导。在这些双层中,取决于分层顺序,T_c为〜15 K或〜30K。这种高度鲁棒的现象被限制在界面的2-3 nm之内。如果这样的双层暴露于臭氧,则T_c超过50 K,并且这种增强的超导性也显示为源自约1-2个单元电池厚的界面层。先前已观察到双层系统中T_c的增强,但当时尚未认识到界面的基本作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号