首页> 外文期刊>Nature >Optical pumping of a single hole spin in a quantum dot
【24h】

Optical pumping of a single hole spin in a quantum dot

机译:量子点中单孔自旋的光泵浦

获取原文
获取原文并翻译 | 示例
           

摘要

The spin of an electron is a natural two-level system for realizing a quantum bit in the solid state. For an electron trapped in a semiconductor quantum dot, strong quantum confinement highly suppresses the detrimental effect of phonon-related spin relaxation. However, this advantage is offset by the hyperfine interaction between the electron spin and the 10~4 to 10~6 spins of the host nuclei in the quantum dot. Random fluctuations in the nuclear spin ensemble lead to fast spin decoherence in about ten nanoseconds. Spin-echo techniques have been used to mitigate the hyperfine interaction, but completely cancelling the effect is more attractive. In principle, polarizing all the nuclear spins can achieve this but is very difficult to realize in practice. Exploring materials with zero-spin nuclei is another option, and carbon nanotubes, graphene quantum dots and silicon have been proposed. An alternative is to use a semiconductor hole. Unlike an electron, a valence hole in a quantum dot has an atomic p orbital which conveniently goes to zero at the location of all the nuclei, massively suppressing the interaction with the nuclear spins. Furthermore, in a quantum dot with strong strain and strong quantization, the heavy hole with spin-3/2 behaves as a spin-1/2 system and spin decoherence mechanisms are weak. We demonstrate here high fidelity (about 99 per cent) initialization of a single hole spin confined to a self-assembled quantum dot by optical pumping. Our scheme works even at zero magnetic field, demonstrating a negligible hole spin hyperfine interaction. We determine a hole spin relaxation time at low field of about one millisecond. These results suggest a route to the realization of solid-state quantum networks that can intra-convert the spin state with the polarization of a photon.
机译:电子的自旋是用于实现固态量子位的自然两级系统。对于捕获在半导体量子点中的电子,强的量子约束高度抑制了与声子相关的自旋弛豫的有害影响。然而,这一优势被电子自旋与量子点中宿主核的10〜4至10〜6自旋之间的超精细相互作用所抵消。核自旋集合体中的随机波动会导致自旋退相干在大约十纳秒内。自旋回波技术已被用于减轻超精细相互作用,但完全消除这种影响更具吸引力。原则上,使所有核自旋极化都可以实现,但是在实践中很难实现。探索具有零自旋核的材料是另一种选择,并且已经提出了碳纳米管,石墨烯量子点和硅。另一种选择是使用半导体孔。与电子不同,量子点中的价空穴具有原子p轨道,该轨道在所有原子核的位置都方便地变为零,从而极大地抑制了与核自旋的相互作用。此外,在具有强应变和强量化的量子点中,具有自旋3/2的重空穴表现为自旋1/2系统,自旋退相干机制较弱。我们在这里展示了通过光泵浦将单个孔自旋限制在自组装量子点上的高保真度(约99%)的初始化过程。我们的方案甚至在零磁场下也能工作,这表明空穴自旋超精细相互作用可忽略不计。我们确定低场约1毫秒的空穴自旋弛豫时间。这些结果暗示了实现固态量子网络的途径,该固态量子网络可以利用光子的极化对自旋态进行内部转换。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号