首页> 外文OA文献 >Optical pumping of a single hole spin in a p-doped quantum dot coupled to a metallic nanoparticle
【2h】

Optical pumping of a single hole spin in a p-doped quantum dot coupled to a metallic nanoparticle

机译:耦合到金属纳米粒子的p掺杂量子点中单孔自旋的光泵浦

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The preparation of quantum states with a defined spin is analyzed in a hybrid system consisting of a p-doped semiconductor quantum dot (QD) coupled to a metallic nanoparticle. The quantum dot is described as a four-level atom-like system using the density matrix formalism. The lower levels are Zeeman-split hole spin states and the upper levels correspond to positively charged excitons containing a spin-up, spin-down hole pair and a spin electron. A metallic nanoparticle with spheroidal geometry is placed in close proximity to the quantum dot, and its effects are considered in the quasistatic approximation. A linearly polarized laser field drives two of the optical transitions of the QD and produces localized surface plasmons in the nanoparticle which act back upon the QD. The frequencies of these localized plasmons are very different along the two principal axes of the nanoparticle, thus producing an anisotropic modification of the spontaneous emission rates of the allowed optical transitions which is accompanied by local-field corrections. This effect translates into a preferential acceleration of some of the optical pathways and therefore into a fast initialization of the QD by excitation with a short optical pulse. The population transfer between the lower levels of the QD and the fidelity is analyzed as a function of the nanoparticle's aspect ratio, the external magnetic field, and the Rabi frequency of the driving field. It is also shown that the main effect of the local-field corrections is a lengthening of the time elapsed to reach the steady-state. The hole spin is predicted to be successfully cooled from 5 to 0.04 K at a magnetic field of 4.6 T applied in the Voigt geometry.
机译:在混合系统中分析具有定义的自旋的量子态的制备,该混合系统由与金属纳米粒子耦合的p掺杂半导体量子点(QD)组成。使用密度矩阵形式主义将量子点描述为四级原子状系统。较低的能级是塞曼分裂的空穴自旋态,较高的能级对应于带正电的激子,其包含自旋向上,自旋向下的空穴对和自旋电子。将具有球形几何形状的金属纳米粒子放置在紧邻量子点的位置,并在准静态逼近中考虑其影响。线偏振激光场驱动QD的两个光学跃迁,并在纳米粒子中产生局部表面等离激元,这些等离激元又作用在QD上。这些局部等离激元的频率沿纳米粒子的两个主轴方向非常不同,因此对所允许的光学跃迁的自发发射速率产生各向异性的修正,并伴有局部场校正。这种效应转化为某些光路的优先加速,因此转化为通过短光脉冲激发而快速初始化QD。 QD的较低级别和保真度之间的种群转移是根据纳米粒子的长宽比,外部磁场和驱动场的拉比频率进行分析的。还表明,局部场校正的主要效果是延长了达到稳态所需的时间。预计在Voigt几何体施加的4.6 T磁场下,空穴自旋会成功地从5冷却到0.04K。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号