...
首页> 外文期刊>Nature >Branched tricarboxylic acid metabolism in Plasmodium falciparum
【24h】

Branched tricarboxylic acid metabolism in Plasmodium falciparum

机译:恶性疟原虫中的支链三羧酸代谢

获取原文
获取原文并翻译 | 示例

摘要

A central hub of carbon metabolism is the tricarboxylic acid cycle, which serves to connect the processes of ghycolysis, gluconeogenesis, respiration, amino acid synthesis and other biosynthetic pathways. The protozoan intracellular malaria parasites (Plasmodium spp.), however, have long been suspected of possessing a significantly streamlined carbon metabolic network in which tricarboxylic acid metabolism plays a minor role. Blood-stage Plasmodium parasites rely almost entirely on glucose fermentation for energy and consume minimal amounts of oxygen, yet the parasite genome encodes all of the enzymes necessary for a complete tricarboxylic acid cycle. Here, by tracing ~(13)C-labelled compounds using mass spectrometry, we show that tricarboxylic acid metabolism in the human malaria parasite Plasmodium falciparum is largely disconnected from gly-colysis and is organized along a fundamentally different architecture from the canonical textbook pathway. We find that this pathway is not cyclic, but rather is a branched structure in which the major carbon sources are the amino acids glutamate and gluta-mine. As a consequence of this branched architecture, several reactions must run in the reverse of the standard direction, thereby generating two-carbon units in the form of acetyl-coenzyme A. We fuerther show that glutamine-derived acetyl-coenzyme A is used for histone acetylation, whereas glucose-derived acetyl-coenzyme A is used to acetylate amino sugars. Thus, the parasite has evolved two independent production mechanisms for acetyl-coenzyme A with different biological functions. These results significantly clarify our understanding of the Plasmodium metabolic network and highlight the ability of altered variants of central carbon metabolism to arise in response to unique environments.
机译:碳代谢的中心枢纽是三羧酸循环,该循环用于连接糖酵解,糖异生,呼吸,氨基酸合成和其他生物合成途径。然而,长期以来一直怀疑原生动物的细胞内疟原虫(Plasmodium spp。)具有明显简化的碳代谢网络,其中三羧酸代谢起着较小的作用。血液阶段的疟原虫寄生虫几乎完全依靠葡萄糖发酵来获取能量并消耗最少的氧气,但是该寄生虫基因组编码了完整三羧酸循环所需的所有酶。在这里,通过使用质谱追踪〜(13)C标记的化合物,我们显示了人类疟原虫恶性疟原虫中的三羧酸代谢与糖酵解作用大相径庭,并且其组织结构与典范教科书途径截然​​不同。我们发现该途径不是循环的,而是分支结构,其中主要的碳源是氨基酸谷氨酸和谷氨酰胺。由于采用这种分支结构,因此必须沿标准方向的相反方向进行多个反应,从而生成乙酰辅酶A形式的两个碳单元。我们进一步证明,谷氨酰胺衍生的乙酰辅酶A用于组蛋白乙酰化,而葡萄糖衍生的乙酰辅酶A用于乙酰化氨基糖。因此,该寄生虫已经进化出具有不同生物学功能的乙酰辅酶A的两种独立的生产机制。这些结果大大阐明了我们对疟原虫代谢网络的理解,并强调了响应于独特环境而产生的中央碳代谢变异体发生改变的能力。

著录项

  • 来源
    《Nature 》 |2010年第7307期| P.774-778| 共5页
  • 作者单位

    Department of Molecular Biology and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA;

    rnCenter for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129, USA;

    rnCenter for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129, USA;

    rnDepartment of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA;

    rnCenter for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129, USA;

    rnDepartment of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA;

    rnDepartment of Molecular Biology and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号