首页> 外文期刊>Nature >High-performance genetically targetable optical neural silencing by light-driven proton pumps
【24h】

High-performance genetically targetable optical neural silencing by light-driven proton pumps

机译:光驱动质子泵的高性能可遗传靶向光学神经沉默

获取原文
获取原文并翻译 | 示例
       

摘要

The ability to silence the activity of genetically specified neurons in a temporally precise fashion would provide the opportunity to investigate the causal role of specific cell classes in neural computations, behaviours and pathologies. Here we show that members of the class of light-driven outward proton pumps can mediate powerful, safe, multiple-colour silencing of neural activity. The gene archaerhodopsin-3 (Arch) from Halorubrum sodomense enables near-100% silencing of neurons in the awake brain when virally expressed in the mouse cortex and illuminated with yellow light. Arch mediates currents of several hundred picoamps at low light powers, and supports neural silencing currents approaching 900 pA at light powers easily achievable in vivo. Furthermore, Arch spontaneously recovers from light-dependent inactivation, unlike light-driven chloride pumps that enter long-lasting inactive states in response to light. These properties of Arch are appropriate to mediate the optical silencing of significant brain volumes over behaviourally relevant timescales. Arch function in neurons is well tolerated because pH excursions created by Arch illumination are minimized by self-limiting mechanisms to levels comparable to those mediated by channelrhodopsins or natural spike firing. To highlight how proton pump ecological and genomic diversity may support new innovation, we show that the blue-green light-drivable proton pump from the fungus Leptosphaeria maculans (Mac) can, when expressed in neurons, enable neural silencing by blue light, thus enabling alongside other developed reagents the potential for independent silencing of two neural populations by blue versus red light. Light-driven proton pumps thus represent a high-performance and extremely versatile class of 'optogenetic' voltage and ion modulator, which will broadly enable new neuro-scientific, biological, neurological and psychiatric investigations.
机译:以时间精确的方式沉默基因指定神经元活动的能力将为研究特定细胞类别在神经计算,行为和病理学中的因果作用提供机会。在这里,我们证明了光驱动外向质子泵类别的成员可以介导强大,安全,多色的神经活动沉默。 Haloubrum sodomense的基因archaerhodopsin-3(Arch)在小鼠皮质中进行病毒表达并用黄光照射时,可使清醒脑中的神经元沉默近100%。 Arch在低光功率下介导数百皮安的电流,并在体内易于实现的光功率下支持接近900 pA的神经沉默电流。此外,Arch自发地从依赖光的灭活中恢复,这与光驱动的氯化物泵根据光进入持久的不活动状态不同。 Arch的这些属性适合在行为相关的时间范围内介导大量大脑的光学沉默。神经元的足弓功能具有良好的耐受性,因为通过自限机制将足弓照明产生的pH偏移最小化,使其水平可与通道视紫红质或自然尖峰激发介导的水平相比。为了突出质子泵的生态和基因组多样性如何支持新的创新,我们证明了真菌蓝斑病(Leptosphaeria maculans)(Mac)的蓝绿色可驱动光子的质子泵在神经元中表达时,可以通过蓝光使神经沉默,从而使与其他已开发的试剂一起,蓝光和红光可独立沉默两个神经种群。因此,光驱动质子泵代表了高性能且用途广泛的“光遗传学”电压和离子调节剂类别,将广泛地促进新的神经科学,生物学,神经学和精神病学研究。

著录项

  • 来源
    《Nature》 |2010年第7277期|98-102|共5页
  • 作者单位

    The MIT Media Laboratory, Synthetic Neurobiology Group, and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA Department of Brain and Cognitive Sciences and MIT McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;

    The MIT Media Laboratory, Synthetic Neurobiology Group, and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA Department of Brain and Cognitive Sciences and MIT McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;

    The MIT Media Laboratory, Synthetic Neurobiology Group, and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA Department of Brain and Cognitive Sciences and MIT McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;

    The MIT Media Laboratory, Synthetic Neurobiology Group, and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA Department of Brain and Cognitive Sciences and MIT McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;

    The MIT Media Laboratory, Synthetic Neurobiology Group, and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA Department of Brain and Cognitive Sciences and MIT McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;

    The MIT Media Laboratory, Synthetic Neurobiology Group, and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA Department of Brain and Cognitive Sciences and MIT McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;

    The MIT Media Laboratory, Synthetic Neurobiology Group, and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA Department of Brain and Cognitive Sciences and MIT McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;

    Department of Brain and Cognitive Sciences and MIT McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;

    Department of Brain and Cognitive Sciences and MIT McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;

    The MIT Media Laboratory, Synthetic Neurobiology Group, and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA Department of Brain and Cognitive Sciences and MIT McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;

    The MIT Media Laboratory, Synthetic Neurobiology Group, and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA Department of Brain and Cognitive Sciences and MIT McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 02:54:59

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号