首页> 外文期刊>Nature >Subunit arrangement and phenylethanolamine binding in GluNl/GluN2B NMD A receptors
【24h】

Subunit arrangement and phenylethanolamine binding in GluNl/GluN2B NMD A receptors

机译:GluN1 / GluN2B NMD A受体中的亚基排列和苯基乙醇胺结合

获取原文
获取原文并翻译 | 示例
       

摘要

Since it was discovered that the anti-hypertensive agent ifenprodil has neuroprotective activity through its effects on NMDA (N-methyl-D-aspartate) receptors~1, a determined effort has been made to understand the mechanism of action and to develop improved therapeutic compounds on the basis of this knowledge2"4. Neurotransmission mediated by NMDA receptors is essential for basic brain development and function5. These receptors form heteromeric ion channels and become activated after concurrent binding of glycine and glutamate to the GluNl and GluN2 subunits, respectively. A functional hallmark of NMDA receptors is that their ion-channel activity is allosterically regulated by binding of small compounds to the amino-terminal domain (ATD) in a subtype-specific manner. Ifenprodil and related phenylethanolamine compounds, which specifically inhibit GluNl and GluN2B NMDA receptors6'7, have been intensely studied for their potential use in the treatment of various neurological disorders and diseases, including depression, Alzheimer's disease and Parkinson's disease2'4. Despite considerable enthusiasm, mechanisms underlying the recognition of phenylethanolamines and ATD-mediated allos-teric inhibition remain limited owing to a lack of structural information. Here we report that the GluNl and GluN2B ATDs form a heterodimer and that phenylethanolamine binds at the interface between GluNl and GluN2B, rather than within the GluN2B cleft. The crystal structure of the heterodimer formed between the GluNlb ATD from Xenopus laevis and the GluN2B ATD from Rattus norvegicus shows a highly distinct pattern of subunit arrangement that is different from the arrangements observed in homodimerk non-NMDA receptors and reveals the molecular determinants for phenylethanolamine binding. Restriction of domain movement in the bi-lobed structure of the GluN2B ATD, by engineering of an inter-subunit disulphide bond, markedly decreases sensitivity to ifenprodil, indicating that conformational freedom in the GluN2B ATD is essential for ifenprodil-mediated allosteric inhibition of NMDA receptors. These findings pave the way for improving the design of subtype-specific compounds with therapeutic value for neurological disorders and diseases.
机译:由于发现抗高血压药ifenprodil通过对NMDA(N-甲基-D-天冬氨酸)受体〜1的作用而具有神经保护活性,因此已做出确定的努力来了解其作用机理并开发出改良的治疗化合物根据这一知识[2]。4。NMDA受体介导的神经传递对于大脑的基本发育和功能必不可少5。这些受体形成异聚离子通道,并在甘氨酸和谷氨酸分别与GluN1和GluN2亚基同时结合后被激活。 NMDA受体的特征是它们的离子通道活性是通过小化合物以亚型特异性方式与氨基末端结构域(ATD)结合而变构调节的。艾芬洛地尔和相关的苯乙醇胺化合物可特异性抑制GluN1和GluN2B NMDA受体6'。 7,已被广泛研究其在治疗各种神经系统疾病和疾病中的潜在用途。包括抑郁症,阿尔茨海默氏病和帕金森氏病在内的各种疾病2'4。尽管有相当大的热情,但由于缺乏结构信息,识别苯乙醇胺和ATD介导的同构异构抑制的潜在机制仍然很有限。在这里,我们报道GluN1和GluN2B ATD形成异二聚体,并且苯乙醇胺结合在GluN1和GluN2B之间的界面上,而不是在GluN2B裂隙内。 Xenopus laevis的GluNlb ATD和Rattus norvegicus的GluN2B ATD之间形成的异二聚体的晶体结构显示了高度不同的亚基排列模式,该模式不同于在同二聚体非NMDA受体中观察到的排列,并揭示了苯乙醇胺结合的分子决定因素。 。通过工程化亚单位间二硫键,限制GluN2B ATD的双叶结构域运动,显着降低了对艾芬洛地尔的敏感性,表明GluN2B ATD的构象自由度对于艾芬洛地尔介导的NMDA变构抑制具有至关重要的作用。这些发现为改善对神经疾病和疾病具有治疗价值的亚型特异性化合物的设计铺平了道路。

著录项

  • 来源
    《Nature》 |2011年第7355期|p.249-253|共5页
  • 作者单位

    Cold Spring Harbor Laboratory, WM Keck Structural Biology Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA;

    Cold Spring Harbor Laboratory, WM Keck Structural Biology Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA;

    Cold Spring Harbor Laboratory, WM Keck Structural Biology Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 02:54:41

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号