首页> 外文期刊>Nature >Tunable ion-photon entanglement in an optical cavity
【24h】

Tunable ion-photon entanglement in an optical cavity

机译:光学腔中可调谐的离子-光子纠缠

获取原文
获取原文并翻译 | 示例
       

摘要

Proposed quantum networks require both a quantum interface between light and matter and the coherent control of quantum states. A quantum interface can be realized by entangling the state of a single photon with the state of an atomic or solid-state quantum memory, as demonstrated in recent experiments with trapped ions, neutral atoms, atomic ensembles and nitrogen-vacancy spins. The entangling interaction couples an initial quantum memory state to two possible light-matter states, and the atomic level structure of the memory determines the available coupling paths. In previous work, the transition parameters of these paths determined the phase and amplitude of the final entangled state, unless the memory was initially prepared in a superposition state (a step that requires coherent control). Here we report fully tunable entanglement between a single ~(40)Ca~+ ion and the polarization state of a single photon within an optical resonator. Our method, based on a bichromatic, cavity-mediated Raman transition, allows us to select two coupling paths and adjust their relative phase and amplitude. The cavity setting enables intrinsically deterministic, high-fidelity generation of any two-qubit entangled state. This approach is apph'cable to a broad range of candidate systems and thus is a promising method for distributing information within quantum networks.
机译:拟议的量子网络既需要光与物质之间的量子界面,又需要量子态的相干控制。量子界面可以通过将单个光子的状态与原子或固态量子存储的状态纠缠在一起来实现,如最近对捕获离子,中性原子,原子团和氮空位自旋的实验所证明的。纠缠的相互作用将初始量子存储状态耦合到两个可能的光物质状态,并且存储器的原子级结构确定了可用的耦合路径。在以前的工作中,这些路径的过渡参数确定了最终纠缠状态的相位和幅度,除非最初以叠加状态准备存储器(此步骤需要进行一致控制)。在这里,我们报告了单个〜(40)Ca〜+离子与光谐振器内单个光子的偏振态之间的完全可调纠缠。我们的方法基于双色,腔介导的拉曼跃迁,使我们能够选择两条耦合路径并调整它们的相对相位和幅度。腔设置可以本质上确定性地生成任何两个量子位纠缠态的高保真度。这种方法适用于广泛的候选系统,因此是一种在量子网络内分配信息的有前途的方法。

著录项

  • 来源
    《Nature》 |2012年第7399期|p.482-485|共4页
  • 作者单位

    lnstitut fuer Experimentalphysik, Universitaet Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria;

    lnstitut fuer Experimentalphysik, Universitaet Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria;

    lnstitut fuer Experimentalphysik, Universitaet Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria;

    lnstitut fuer Experimentalphysik, Universitaet Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria;

    QUEST Institute for Experimental Quantum Metrology, Physikalisch-Technische Bundesanstalt,38116 Braunschweig, Germany,lnstitut fuer Quantenoptik, Leibniz Universitaet Hannover, 30167 Hannover, Germany;

    lnstitut fuer Experimentalphysik, Universitaet Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria;

    lnstitut fuer Experimentalphysik, Universitaet Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria;

    lnstitut fuer Experimentalphysik, Universitaet Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria,lnstitut fuer Quantenoptik und Quanteninformation der Oesterreichischen Akademie der Wissenschaften.Technikerstrasse 21a, 6020 Innsbruck, Austria;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 02:54:08

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号