首页> 外文期刊>Nature >Quantum tomography of an electron
【24h】

Quantum tomography of an electron

机译:电子的量子层析成像

获取原文
获取原文并翻译 | 示例
       

摘要

The complete knowledge of a quantum state allows the prediction of the probability of all possible measurement outcomes, a crucial step in quantum mechanics. It can be provided by tomographic methods which have been applied to atomic, molecular, spin and photonic states. For optical or microwave photons, standard tomography is obtained by mixing the unknown state with a large-amplitude coherent photon field. However, for fermions such as electrons in condensed matter, this approach is not applicable because fermionic fields are limited to small amplitudes (at most one particle per state), and so far no determination of an electron wavefunction has been made. Recent proposals involving quantum conductors suggest that the wavefunction can be obtained by measuring the time-dependent current of electronic wave interferometers or the current noise of electronic Hanbury-Brown/Twiss interferometers. Here we show that such measurements are possible despite the extreme noise sensitivity required, and present the reconstructed wavefunction quasi-probability, or Wigner distribution function, of single electrons injected into a ballistic conductor. Many identical electrons are prepared in well-controlled quantum states called levitons by repeatedly applying Lorentzian voltage pulses to a contact on the conductor. After passing through an electron beam splitter, the levitons are mixed with a weak-amplitude fermionic field formed by a coherent superposition of electron-hole pairs generated by a small alternating current with a frequency that is a multiple of the voltage pulse frequency. Antibunching of the electrons and holes with the levitons at the beam splitter changes the leviton partition statistics, and the noise variations provide the energy density matrix elements of the levitons. This demonstration of quantum tomography makes the developing field of electron quantum optics with ballistic conductors a new test-bed for quantum information with fermions. These results may find direct application in probing the entanglement of electron flying quantum bits, electron decoherence and electron interactions. They could also be applied to cold fermionic (or spin-1/2) atoms.
机译:完全了解量子态可以预测所有可能的测量结果的概率,这是量子力学中的关键步骤。可以通过已应用于原子,分子,自旋和光子状态的层析成像方法来提供。对于光学或微波光子,通过将未知状态与大振幅相干光子场混合来获得标准层析成像。然而,对于诸如电子在凝聚态中的费米子,该方法不适用,因为费米子场被限制为小振幅(每个状态最多一个粒子),并且到目前为止,尚未确定电子波函数。涉及量子导体的最新提议表明,可以通过测量电子波干涉仪的时间相关电流或电子Hanbury-Brown / Twiss干涉仪的电流噪声来获得波函数。在这里,我们表明,尽管需要极高的噪声灵敏度,但仍可以进行此类测量,并给出了注入弹道导体中的单个电子的重构波函数准概率或维格纳分布函数。通过将洛伦兹电压脉冲重复施加到导体上的接触点,可以在处于良好控制的量子态(称为左旋子)中制备许多相同的电子。穿过电子束分离器后,悬浮液与弱振幅铁电场混合,该弱振幅铁电场是由小交流电产生的电子-空穴对的相干叠加而形成的,交流电的频率是电压脉冲频率的倍数。电子和空穴在束分离器处与左旋体的反聚束改变了李维顿分配统计,并且噪声变化提供了左旋体的能量密度矩阵元素。量子层析成像技术的这一演示使带弹道导体的电子量子光学技术的发展成为了一个新的测试带费米子量子信息的试验台。这些结果可直接用于探测飞行电子量子位的纠缠,电子去相干和电子相互作用。它们也可以应用于冷铁离子(或自旋1/2)原子。

著录项

  • 来源
    《Nature》 |2014年第7524期|603-607|共5页
  • 作者单位

    Service de Physique de I'Etat Condense, IRAMIS/DSM (CNRS URA 2464), CEA Saclay, F-91191 Gif-sur-Yvette, France;

    Service de Physique de I'Etat Condense, IRAMIS/DSM (CNRS URA 2464), CEA Saclay, F-91191 Gif-sur-Yvette, France;

    Service de Physique de I'Etat Condense, IRAMIS/DSM (CNRS URA 2464), CEA Saclay, F-91191 Gif-sur-Yvette, France;

    CNRS, Laboratoire de Photonique et de Nanostructures, Route de Nozay, 91460 Marcoussis, France;

    CNRS, Laboratoire de Photonique et de Nanostructures, Route de Nozay, 91460 Marcoussis, France;

    Service de Physique de I'Etat Condense, IRAMIS/DSM (CNRS URA 2464), CEA Saclay, F-91191 Gif-sur-Yvette, France;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 02:53:12

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号