首页> 外文期刊>Nature >The DNA methylation landscape of human early embryos
【24h】

The DNA methylation landscape of human early embryos

机译:人类早期胚胎的DNA甲基化景观

获取原文
获取原文并翻译 | 示例
           

摘要

DNA methylation is a crucial element in the epigenetic regulation of mammalian embryonic development. However, its dynamic patterns have not been analysed at the genome scale in human pre- implantation embryos due to technical difficulties and the scarcity of required materials. Here we systematically profile the methylome of human early embryos from the zygotic stage through to post- implantation by reduced representation bisulphite sequencing and whole-genome bisulphite sequencing. We show that the major wave of genome-wide demethylation is complete at the 2-cell stage, contrary to previous observations in mice. Moreover, the demethyliation of the paternal genome is much faster than that of the maternal genome, and by the end of the zygotic stage the genome-wide methylation level in male pronuclei is already lower than that in female pronuclei. The inverse correlation between promoter methylation and gene expression gradually strengthens during early embryonic development, reaching its peak at the post-implantation stage. Furthermore, we show that active genes, with the trimethylation of histone H3 at lysine 4 (H3K4me3) mark at the promoter regions in pluripotent human embryonic stem cells, are essentially devoid of DNA methylation in both mature gametes and throughout pre-implantation development. Finally, we also show that long interspersed nuclear elements or short interspersed nuclear elements that are evolutionarily young are dem- ethylated to a milder extent compared to older elements in the same family and have higher abundance of transcripts, indicating that early embryos tend to retain higher residual methylation at the evolutionarily younger and more active transposable elements. Our work provides insists into the critical features of the methylome of human early embryos, as well as its functional relation to the regulation of gene expression and the repression of transposable elements.%DNA甲基化的普遍模式在原始生殖细胞中和哺乳动物早期胚胎发育过程中被大举重新编程。这种重新编程在小鼠胚胎中已被很好表征,但我们对人类胚胎中的DNA甲基化动态还缺乏详细的认识。本期Nafure上发表的两篇论文显示,在受精之后,人类基因组的绝大部分都会立即发生DNA甲基化的大量丧失,从而证实这种表观遗传重新编程在演化上是一个保守的发育特征。Hongshan Guo等人生成了碱基分辨率的、胚胎形成过程几个发育阶段的人类配子DNA甲基化图。Zachary Smith等人获得了人类胚胎形成过程几个发育阶段以及在人类胚胎干细胞系衍生过程中的类似的DNA甲基化图。 这两项研究让我们对小鼠与人类甲基化动态之间的差别以及DNA甲基化与基因表达和转座元素之间的功能关系有所认识。
机译:DNA甲基化是哺乳动物胚胎发育的表观遗传调控中的关键要素。然而,由于技术上的困难和所需材料的缺乏,尚未在人类植入前胚胎的基因组规模上分析其动态模式。在这里,我们通过减少代表性的亚硫酸氢盐测序和全基因组亚硫酸氢盐测序,系统地描述了人类从合子期到植入后早期胚胎的甲基化组。我们表明,全基因组全脱甲基的主要浪潮是在2细胞阶段完成的,与之前在小鼠中观察到的相反。而且,父本基因组的去甲基化比母本基因组的去甲基化要快得多,并且到合子阶段结束时,男性前核中的全基因组甲基化水平已经低于女性原核中的甲基化水平。启动子甲基化与基因表达之间的反相关在胚胎早期发育过程中逐渐增强,并在植入后阶段达到顶峰。此外,我们显示,在多能人胚胎干细胞的启动子区域,在赖氨酸4(H3K4me3)处有组蛋白H3的三甲基化标记的活性基因,在成熟配子和整个植入前发育过程中基本上都没有DNA甲基化。最后,我们还显示,与同一家族中的较旧元素相比,进化上较年轻的长散布的核元件或短散布的核元件被脱甲基化的程度更轻,并且转录本的丰度更高,这表明早期胚胎倾向于保留更高的水平。在进化上更年轻,更活跃的转座因子上残留的甲基化。我们的工作提供了人类早期胚胎甲基化组的关键特征,以及其与基因表达调控和转座因子阻遏的功能关系。%DNA甲基化的普遍模式在原始生殖细胞中和哺乳这种早期编程在小鼠身上已经被很好地表征,但我们对人类入侵中的DNA甲基化动态还缺乏详细的认识。本期Nafure上发表的两篇论文显示,在受精之后,人类基因组的绝大部分都会立即发生DNA甲基化的大量丧失,从而证实这种表观遗传重新编程在进化上是一个保守的发展特征。扎卡里·史密斯(Zachary Smith)等人获得了人类造成的形成过程几个发育阶段以及在人类体内的干细胞系衍生过程中的类似的DNA。甲基化图。这将会使我们对小鼠与人类甲基化动态之间的差异以及DNA甲基化与基因表达和转座元素之间的功能关系有所帮助。

著录项

  • 来源
    《Nature》 |2014年第7511期|606-610b2|共6页
  • 作者单位

    Biodynamic Optical Imaging Center & Center for Reproductive Medicine, College of Life Sciences, Third Hospital, Peking University, Beijing 100871, China;

    Biodynamic Optical Imaging Center & Center for Reproductive Medicine, College of Life Sciences, Third Hospital, Peking University, Beijing 100871, China,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China;

    Biodynamic Optical Imaging Center & Center for Reproductive Medicine, College of Life Sciences, Third Hospital, Peking University, Beijing 100871, China,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China;

    Biodynamic Optical Imaging Center & Center for Reproductive Medicine, College of Life Sciences, Third Hospital, Peking University, Beijing 100871, China,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China;

    Biodynamic Optical Imaging Center & Center for Reproductive Medicine, College of Life Sciences, Third Hospital, Peking University, Beijing 100871, China;

    Biodynamic Optical Imaging Center & Center for Reproductive Medicine, College of Life Sciences, Third Hospital, Peking University, Beijing 100871, China,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China;

    Biodynamic Optical Imaging Center & Center for Reproductive Medicine, College of Life Sciences, Third Hospital, Peking University, Beijing 100871, China,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China;

    Biodynamic Optical Imaging Center & Center for Reproductive Medicine, College of Life Sciences, Third Hospital, Peking University, Beijing 100871, China,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China;

    Biodynamic Optical Imaging Center & Center for Reproductive Medicine, College of Life Sciences, Third Hospital, Peking University, Beijing 100871, China,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China;

    Biodynamic Optical Imaging Center & Center for Reproductive Medicine, College of Life Sciences, Third Hospital, Peking University, Beijing 100871, China,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China;

    Biodynamic Optical Imaging Center & Center for Reproductive Medicine, College of Life Sciences, Third Hospital, Peking University, Beijing 100871, China,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China;

    Biodynamic Optical Imaging Center & Center for Reproductive Medicine, College of Life Sciences, Third Hospital, Peking University, Beijing 100871, China,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China;

    Biodynamic Optical Imaging Center & Center for Reproductive Medicine, College of Life Sciences, Third Hospital, Peking University, Beijing 100871, China,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China;

    Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China;

    Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China;

    Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China;

    Biodynamic Optical Imaging Center & Center for Reproductive Medicine, College of Life Sciences, Third Hospital, Peking University, Beijing 100871, China;

    Biodynamic Optical Imaging Center & Center for Reproductive Medicine, College of Life Sciences, Third Hospital, Peking University, Beijing 100871, China;

    Biodynamic Optical Imaging Center & Center for Reproductive Medicine, College of Life Sciences, Third Hospital, Peking University, Beijing 100871, China;

    Biodynamic Optical Imaging Center & Center for Reproductive Medicine, College of Life Sciences, Third Hospital, Peking University, Beijing 100871, China;

    Biodynamic Optical Imaging Center & Center for Reproductive Medicine, College of Life Sciences, Third Hospital, Peking University, Beijing 100871, China,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA;

    Biodynamic Optical Imaging Center & Center for Reproductive Medicine, College of Life Sciences, Third Hospital, Peking University, Beijing 100871, China;

    Biodynamic Optical Imaging Center & Center for Reproductive Medicine, College of Life Sciences, Third Hospital, Peking University, Beijing 100871, China,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA;

    Biodynamic Optical Imaging Center & Center for Reproductive Medicine, College of Life Sciences, Third Hospital, Peking University, Beijing 100871, China,Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China;

    Biodynamic Optical Imaging Center & Center for Reproductive Medicine, College of Life Sciences, Third Hospital, Peking University, Beijing 100871, China,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号